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Abstract The set of solutions of random constraint satisfaction problems (zero energy
groundstates of mean-field diluted spin glasses) undergoes several structural phase tran-
sitions as the amount of constraints is increased. This set first breaks down into a large
number of well separated clusters. At the freezing transition, which is in general distinct
from the clustering one, some variables (spins) take the same value in all solutions of a
given cluster. In this paper we introduce and study a message passing procedure that allows
to compute, for generic constraint satisfaction problems, the sizes of the rearrangements
induced in response to the modification of a variable. These sizes diverge at the freezing
transition, with a critical behavior which is also investigated in details. We apply the generic
formalism in particular to the random satisfiability of boolean formulas and to the coloring
of random graphs. The computation is first performed in random tree ensembles, for which
we underline a connection with percolation models and with the reconstruction problem of
information theory. The validity of these results for the original random ensembles is then
discussed in the framework of the cavity method.

Keywords Random constraint satisfaction problems · Freezing transition · Cavity method

1 Introduction

The theory of computational complexity [1] establishes a classification of constraint satis-
faction problems (CSP) according to their difficulty in the worst case. For concreteness let
us introduce the three problems we shall use as running examples in the paper:

• k-XORSAT. Find a vector �x of boolean variables satisfying the linear equations A�x =
�b (mod 2), where each row of the 0/1 matrix A contains exactly k non-null elements, and
�b is a given boolean vector.
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• q-Coloring (q-COL). Given a graph, assign one of q colors to each of its vertices, without
giving the same color to the two extremities of an edge.

• k-Satisfiability (k-SAT). Find a solution of a boolean formula made of the conjunction
(logical AND) of clauses, each made of the disjunction (logical OR) of k literals (a vari-
able or its logical negation).

Each of these problems admits several variants. In the decision version one has to assert
the existence or not of a solution, for instance a proper coloring of a given graph. More
elaborate questions are the estimation of the number of such solutions, or, in the absence
of solution, the discovery of optimal configurations, for instance colorings minimizing the
number of monochromatic edges. The decision variant of the three examples stated above
fall into two distinct complexity classes: k-XORSAT is in the P class, while the two others
are NP-complete for k, q ≥ 3 (see [2] for a classification of generic boolean CSPs). This
means that the existence of a solution of the XORSAT problem can be decided in a time
growing polynomially with the number of variables, for any instance of the problem; one
can indeed use the Gaussian elimination algorithm. On the contrary no fast algorithm able
of solving every coloring or satisfiability problem is known, and the existence of such a
polynomial time algorithm is considered as highly improbable.

This notion of computational complexity, being based on worst-case considerations,
could overlook the possibility that “most” of the instances of an NP problem are in fact
easy and that the difficult cases are very rare. Random ensembles of problems have thus
been introduced in order to give a quantitative content to this notion of typical instances;
a property of a problem will be considered as typical if its probability (with respect to the
random choice of the instance) goes to one in the limit of large problem sizes. Most random
ensembles depend on an external parameter that can be varied continuously. In the color-
ing problem one can for instance consider the traditional Erdös–Rényi random graphs [3]
which are parameterized by their mean connectivity c. For (XOR)SAT instances this role is
played by the ratio α of the number of constraints (clauses for SAT or rows in the matrix
for XORSAT) to the number of variables. A remarkable threshold phenomenon, first ob-
served numerically [4], occurs when this parameter is varied: when a particular value cs, αs

is crossed from below, the instances go from typically satisfiable to typically unsatisfiable.
This statement has been rigorously proven for XORSAT [5, 6] and for 2-SAT [7], in the
other cases it is only a largely accepted conjecture, with sharpness condition on the width of
the transition window [8] and bounds on its possible location [9, 10].

Threshold phenomena are largely studied in statistical mechanics under the name of
phase transitions. There is moreover a natural analogy between optimization problems and
statistical mechanics; if one defines the energy as the number of violated constraints, for
instance the number of monochromatic edges, the optimal configurations of a problem co-
incide with the groundstates of the associated physical system, an antiferromagnetic Potts
model in the coloring case. This analogy triggered a large amount of research, relying on
methods of statistical mechanics of disordered systems originally devised for the study of
mean-field spin-glasses [11]. Early examples of this approach for the satisfiability and col-
oring problems can be found in [12, 13].

One of the most interesting outcomes of this line of research [14–16] has been the sug-
gestion that other structural threshold phenomena take place before the satisfiability one.1

1It was of course already known that the algorithms rigorously studied to derive lower bounds on the satisfia-
bility threshold work only up to values of α smaller than αs [9]. These values are however largely algorithm-
dependent and not directly related to a change of structure in the configuration space.
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The set of solutions of a random CSP, viewed as a subset of the whole configuration space,
is smooth at low values of the constraint ratio but becomes fragmented into clusters of so-
lutions for intermediate values of the control parameter, α ∈ [αd, αs]. This clustering transi-
tion has been rigorously demonstrated in the XORSAT case [5, 6], for which it has a simple
geometric interpretation. αd is indeed the threshold for the percolation of the 2-core of the
hypergraph underlying the CSP; between αd and αs there is typically a finite fraction of the
variables and constraints in a peculiar sub-formula known as the backbone. Every solution
of the backbone gives birth to a cluster of the complete formula. The variables of the back-
bone are said to be frozen in a given cluster, i.e. they take the same value in all the solutions
belonging to a cluster; this is merely a consequence of the definition of a cluster in this case.

Establishing a precise and generic definition of the clusters is not an easy task, not to
speak about proving tight rigorous results on their existence or properties (for recent results
in this direction see [17–20]). Even at the heuristic level, it was recently argued [21–23] that
the computation of αd for random satisfiability (or cd for coloring) by previous statistical
mechanics studies [24, 25] was incorrect. Roughly speaking, in these two models, the sizes
of the clusters can have large fluctuations [26] that must be taken into consideration. In [21]
the existence of yet another threshold (for k, q ≥ 4) αc ∈ [αd, αs] was also pointed out; this
condensation (or replica symmetry breaking) threshold separates two clustered regimes, one
where the relevant clusters are exponentially numerous (for smaller values of α) and the
other where there is only a sub-exponential number of them.

The clustering transition of XORSAT, because of its geometric interpretation, is certainly
a good example on which developing one’s intuition of the clustering phenomenon. There
are however at least two aspects in which XORSAT departs from other CSP and where the
intuitive picture must be taken with a grain of salt. The first is that the clusters of XORSAT
all have the same size, because of the linear algebra structure of its set of solutions. For
this reason the condensation phenomenon is not present in XORSAT. The second point is
that clusters of XORSAT have frozen variables, by definition. There is however no obvious
reason that this should be true for any CSP. On the contrary we shall argue in this paper
that in general frozen variables appear at another value αf of the control parameter, with
generically αf ∈ [αd, αs]. This was one of the results of [22, 23], here we shall develop this
point and quantify the precursors of the transition before αf. For this we build upon the study
of XORSAT presented in [27] and extend it to generic CSPs, in particular satisfiability and
coloring. The central notion studied here is the one of rearrangement (to some extent related
to the long-range frustration of [28]): given an initial solution of a CSP and a variable i

that one would like to modify, a rearrangement is a path in configuration space that starts
from the initial solution and leads to another solution where the value of the ith variable
is changed with respect to the initial one. The minimal length of such a path is a measure
of how constrained was the variable i in the initial configuration. In intuitive terms this
length diverges with the system size when the variable was frozen in the initial cluster. More
formally we shall indeed find an identification between the probability a rearrangement has
a diverging size and the fraction of variables submitted to a “hard field” in the more usual
cavity point of view.

The paper is organized as follows. In Sect. 2 we introduce a generic class of CSPs and
precise the definition of the rearrangements. Sections 3 and 4 are devoted to modified (tree)
random ensembles in which the approach is essentially rigorous; the former presents detailed
computations in a rather generic setting and its application to the three selected examples,
while the latter presents the numerical results and discuss the generic phenomenology at
the approach of the freezing transition in the tree ensembles, with some more technical
details deferred to Appendix 1. The computation is reconsidered in the perspective of the
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reconstruction problem in Sect. 5. The applicability of these results to the original ensembles
is discussed in Sect. 6, through a precise statement of the hypotheses of the cavity method.
Conclusions and perspectives for future work are presented in Sect. 7.

2 Definitions

We introduce here some notations and definitions for a class of problems that encompasses
the three examples we shall treat in more details. The degrees of freedom of the CSP will be
N variables σi taking values in a discrete alphabet X ; global configurations are denoted σ =
(σ1, . . . , σN). An instance (or formula) F of the CSP is a set of M constraints between the
variables σi . The ath constraint is defined by a function ψa(σ a) → {0,1}, which depends on
the configuration of a subset of the variables σa and is equal to 1 if the constraint is satisfied,
0 otherwise. The set SF ⊂ XN of solutions of F is composed of the configurations satisfying
simultaneously all the constraints. It can thus be formally defined as SF = {σ |ψF (σ) = 1},
where the indicator function ψF is

ψF (σ ) =
M∏

a=1

ψa(σ a). (1)

When the formula admits a positive number of solutions, call it ZF , the uniform measure
over the solutions is denoted μF (σ) = ψF (σ)/ZF .

Factor graphs [29] provide an useful representation of a CSP. These graphs (see Fig. 1
for an example) have two kind of nodes. Variable nodes (filled circles on the figure) are
associated to the degrees of freedom σi , while constraint nodes (empty squares) represent
the clauses ψa . An edge between constraint a and variable i is drawn whenever ψa depends
on σi . The neighborhood ∂a of a constraint node is the set of variable nodes that appear
in σa . Conversely ∂i is the set of constraints that depend on σi . We shall conventionally
use the indices i, j, . . . for the variable nodes, a, b, . . . for the constraints, and denote by \
the subtraction from a set. Two variable nodes are called adjacent if they appear in a com-
mon constraint. The graph distance between two variable nodes i and j is the number of
constraint nodes encountered on a shortest path linking i and j (formally infinite if the two
variables are not in the same connected component of the graph).

The three illustrative examples presented above admits a simple representation in this
formalism:

• k-XORSAT. The degrees of freedom of this CSP are boolean variables that we shall rep-
resent, following the physics conventions, by Ising spins, X = {−1,+1}. Each constraint

Fig. 1 An example of factor
graph. The neighborhoods are for
instance ∂i = {a, b, c, d} and
∂i \ a = {b, c, d}
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involves a subset of k variables, σa = (σi1
a
, . . . , σika

), and reads ψa(σ a) = I(σi1
a
, . . . ,

σika
= Ja), where here and in the following I(·) denotes the indicator function of an event

and Ja ∈ {−1,+1} is a given constant. This is equivalent to the definition given in the in-
troduction: defining xi, ba ∈ {0,1} such that σi = (−1)xi and Ja = (−1)ba , the constraint
imposed by ψa reads xi1

a
+· · ·+ xika

= ba (mod 2), which is nothing but the ath row of the

matrix equation A�x = �b. The addition modulo 2 of boolean variables can also be read as
the binary exclusive OR operation, hence the name XORSAT used for this problem.

• q-COL. Here X = {1, . . . , q} is the set of allowed colors on the N vertices of a graph.
Each edge a connecting the vertices i and j prevents them from being of the same color:
ψa(σi, σj ) = I(σi �= σj ).

• k-SAT. As in the XORSAT problem one deals with Ising represented boolean variables,
but in each clause the XOR operation between variables is replaced by an OR between
literals (i.e. a variable or its negation). In other words a constraint a is unsatisfied only
when all literals evaluate to false, or in Ising terms when all spins σi involved in the
constraint take their wrong value that we denote J i

a : ψa(σ a) = 1 − I(σi = J i
a ∀i ∈ ∂a).

The random ensembles of CSPs instances we shall use are defined as follows:

• k-XORSAT. For each of the M clauses a a k-uplet of distinct variable indices (i1
a , . . . , i

k
a )

is chosen uniformly at random among the
(
N

k

)
possible ones, and the constant Ja is taken

to be ±1 with probability one-half.
• q-coloring. A set of M among the

(
N

2

)
possible edges a = {i, j} is chosen uniformly at

random.
• k-SAT. The variables i

j
a are chosen as in the XORSAT ensemble, and the J i

a are indepen-
dently taken to be ±1 with equal probability.

For the coloring problem this construction is the classical Erdös–Rényi random graph
G(N,M), the two other cases are its random hypergraph generalization. We are interested
in the thermodynamic limit of large instances where N and M both diverge with a fixed
ratio2 α = M/N . Random (hyper)graphs have many interesting properties in this limit [3].
For instance the degree of a variable node of the factor graph converges to a Poisson law of
average αk for the XORSAT and SAT cases, and 2α for the coloring ensemble. For clarity in
the latter case we shall use the notation c = 2α for the average connectivity. Moreover, pick-
ing at random one variable node i and isolating the subgraph induced by the variable nodes
at a graph distance smaller than a given constant L yields, with a probability going to one in
the thermodynamic limit, a (random) tree. This tree can be described by a Galton–Watson
branching process: the root i belongs to l constraints, where l is a Poisson random variable
of parameter αk (c in the coloring case). The variable nodes adjacent to i give themselves
birth to new constraints, in numbers which are independently Poisson distributed with the
same parameter. This reproduction process is iterated on L generations, until the variable
nodes at graph distance L from the initial root i have been generated.

We now define the main object of our study. First recall the well-known definition of
the Hamming distance between two configurations, d(σ , τ ) = ∑N

i=1 I(σi �= τi). Consider
an initial solution of the formula, σ ∈ SF , and imagine one wants to modify the value of

2In this limit the quantities studied in this paper are not affected by some variations around these models. For
instance in the coloring case G(N,M) can be replaced by the ensemble G(N,p) where each edge is present
independently with probability p = 2α/N , such that the average number of edges is close to M . The choice
of the (hyper)edges with or without replacement is also irrelevant.
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the variable i. A rearranged solution is a new configuration τ ∈ SF such that τi �= σi . The
minimal size of a rearrangement (m.s.r.) for variable i starting from σ ∈ SF is defined as

ni(σ ,F ) = min
τ

{d(σ , τ ) | τ ∈ SF , τi �= σi}, (2)

and measures how costly (in terms of Hamming distance) it is to perturb the solution at
variable i.3 It can also be viewed as the minimal length of a path in configuration space,
modifying one variable at a time, between σ and another solution with a different value of
variable i, thus providing a quantification of how much constrained was initially this vari-
able. We shall also speak of the support of a rearrangement as the set of variables which
differ in the initial and final configurations, the size of the rearrangement being the cardinal-
ity of its support.

In general the m.s.r. will depend on the starting configuration, we thus define its distrib-
ution with respect to an uniform choice of σ (in abbreviation m.s.r.d.),

q(i,F )
n =

∑

σ

μF (σ )δn,ni (σ ,F ). (3)

There should be no possibility of confusion between the distribution qn and the number q

of allowed colors in the q-COL problem. When dealing with random CSPs we shall study
the average of this distribution,

qn = Eq(i,F )
n , (4)

where the expectation is taken with respect to the instance ensemble (in the cases considered
here all variable nodes are equivalent on average). Its behavior in the thermodynamic limit
will drastically change with the connectivity parameter α (or c for the coloring). We shall
indeed define the threshold αf (cf) as the value above which a finite fraction of the distribu-
tion qn is supported on sizes n that diverge with the number of variables. In pictorial terms
clusters acquire frozen variables at this point, their rearrangements must be of diverging size
and thus lead to a final solution outside the initial cluster.

The computation of the average m.s.r.d. will be first undertaken in a random tree ensem-
ble, mimicking the tree neighborhoods of the random graphs. The threshold for the freezing
transition in these tree instances will be computed, along with a set of exponents characteriz-
ing the behavior of the average m.s.r.d. when the transition is approached from the unfrozen
phase. For clarity we shall denote αp instead of αf the thresholds in the tree ensembles. We
shall then argue in Sect. 6, on the basis of the non-rigorous cavity method, that for some
values of α and k the properties of the random graphs instances are correctly described by
the computations in the tree ensemble. In particular for large enough values of k we shall
conjecture that αp = αf. We will also explain how the computation has to be amended to
handle the more elaborated version of the cavity method (with replica-symmetry breaking),
and what are the expectedly universal characteristics of the critical behavior at the freezing
transition.

3 Minimal Size Rearrangements in Random Tree Ensembles

In this and the next section all the instances of CSP encountered have an underlying factor
graph which is a finite tree. Given such a formula F (or equivalently its factor graph) and an

3If σi takes the same value in every solution we formally define ni = N + 1.
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Fig. 2 The cavity graphs Fa→i

and Fi→a obtained from the
example of Fig. 1

edge i − a between a variable node i and an adjacent constraint node a, we define two sub
formulas (cavity graphs) Fi→a and Fa→i . Fi→a is obtained from F by deleting the branch of
the formula rooted at i starting with constraint a. Conversely Fa→i is obtained by keeping
only this branch (see Fig. 2). We also decompose the configuration σ as (σ a→i , σi, σ i→a),
where σa→i (resp. σ i→a) is the configurations of the variable nodes in Fa→i (resp. Fi→a)
distinct from i. The notation σ \i will be used for the configuration of all variables except i.
The computation, based on the natural recursive structure of trees, will be performed in three
steps: we shall first see how to obtain ni(σ ,F ), then its distribution with respect to σ , q(i,F )

n ,
which shall finally be averaged over a random tree ensemble. For notational simplicity F

will often be kept implicit. This approach is presented in a general setting before the three
specific cases of XORSAT, COL and SAT are treated.

3.1 General Case

3.1.1 Given Tree, Given σ

The computation of the m.s.r. ni on a tree factor graph can be performed in a recursive way.
One has to determine, for each value of τi �= σi , the cost, in terms of Hamming distance,
of the modification σi → τi . This can be done by computing separately these costs in the
factor graphs Fa→i for all the constraint nodes a around i and then patching together the
rearrangements of the sub-formulae. Rearranging a factor graph Fa→i amounts to looking
for a configuration of the variables j ∈ ∂a \ i which satisfies the interaction a and which
provokes a minimal propagation of the rearrangement in the branches Fj→a .

To formalize this reasoning we introduce a q-component vectorial notation, �n, where
the rows of the vectors are indexed by a spin value in X , and we shall denote [�n]τ the τ th
component of �n. We define �ni(σ ) as the m.s.r. for i starting from the initial configuration σ ,
and with the final value τi encoded in the row of the vector:

[�ni(σ )]τi = min
τ\i

{d(σ , τ = (τi, τ \i )) | τ ∈ SF }. (5)

The original quantity ni(σ ) is obtained from this more detailed one as ni(σ ) =
minτi �=σi

[�ni(σ )]τi . The recursive computation of �ni is performed in terms of vectorial mes-
sages on the directed edges of the factor graph, �ni→a and �na→i . The former, �ni→a(σi, σ i→a)

is defined exactly as �ni with the cavity graph Fi→a replacing the original formula F . The
latter reads

[�na→i (σ a→i )]τi = min
τa→i

{d(σ a→i , τ a→i ) | (τi, τ a→i ) ∈ SFa→i
}. (6)



258 J Stat Phys (2008) 130: 251–293

Note that here one does not count the cost of flipping the root variable, which avoids over-
counting when gluing together the cavity graphs. A moment of thought reveals that these
messages obey the following recursive equations:

�na→i (σ a→i ) = f̃ ({�nj→a(σj , σ j→a)}j∈∂a\i ),

�ni→a(σi, σ i→a) = g̃σi
({�nb→i (σ b→i )}b∈∂i\a),

(7)

where the functions f̃ and g̃ are given by

[
f̃ ({�nj→a}j∈∂a\i )

]
τi

≡ min
τa\i

{ ∑

j∈∂a\i
[�nj→a]τj

∣∣ ψa(τi, τ a\i ) = 1

}
, (8)

[̃gσ (�n1, . . . , �nl)]τ ≡ I(τ �= σ) + [�n1]τ + · · · + [�nl]τ . (9)

To lighten the notations we keep implicit the dependence of the functions f̃ and g̃ on the
edges of the factor graph. These equations can be easily solved, for a given initial satisfying
assignment σ , noting that the messages from the leaf variable nodes i satisfy the boundary
condition �ni→a(σi) = �o(σi), where we define [�o(σ )]τ = I(σ �= τ). The recursions (7) can
then be successively applied to determine the value of all messages in a single sweep from
the exterior of the graph towards its center. When this is done the m.s.r. for a variable i is
obtained from

�ni(σ ) = g̃σi
({�na→i (σi, σ a→i )}a∈∂i). (10)

Note that this recursive approach provides not only the size of a minimal rearrangement, but
also a final configuration achieving this bound. One just has to bookkeep, along with the
size informations encoded in the messages �n, the configuration reaching the minimum in (8)
(if there are several of them one is chosen arbitrarily). By construction the support of these
optimal rearrangements is connected.

3.1.2 Given Tree, Distribution with Respect to σ

Following the program sketched above, we introduce now a probability distribution μ for
the initial solution σ of the formula:

μ(σ) = 1

Z

∏

a

ψa(σ a)
∏

i∈B

ηext,i (σi), (11)

where Z is a normalization constant, B is a subset of the leaves of the factor graph, and the
ηext are probability laws on X that, by analogy with magnetic systems, we shall call fields.
μ vanishes for configurations which do not satisfy the formula; if B = ∅ it is uniform on
the set of solutions, otherwise the external fields ηext can introduce a bias in the law (this
possibility will reveal useful in the following). We shall only assume the external fields to
be “permissive” enough for the above expression to remain well defined, i.e. they do not put
a vanishing weight on the solutions of the formula (even if ηext can be in principle {0,1}
valued).

The absence of cycles in the factor graph induces a Markovian property of the measure
μ which greatly simplifies its characterization. One can indeed compute recursively the
marginals of the law on any subset of variable nodes, introducing on each directed edge of
the factor graph another family of messages (cavity measures) νa→i (σi) (resp. ηi→a(σi)).
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These are the law of σi in the measure associated to the cavity factor graph Fa→i (resp.
Fi→a), and are solutions of

νa→i = f ({ηj→a}j∈∂a\i ),

f ({ηj→a}j∈∂a\i )(σi) = 1

z({ηj→a}j∈∂a\i )

∑

σa\i
ψa(σi, σ a\i )

∏

j∈∂a\i
ηj→a(σj ),

(12)

ηi→a = g({νb→i}b∈∂i\a),

g({νb→i}b∈∂i\a)(σi) = 1

z({νb→i}b∈∂i\a)

∏

b∈∂i\a
νb→i (σi),

(13)

where the functions z are defined by normalization. Again for clarity we do not indicate
explicitly the dependence of the functions f , g and z on the edges. The boundary conditions
are ηi→a = ηext,i when i is a leaf in B , ηi→a = η (the uniform law on X ) if i is a leaf not
in B . This set of equations enjoys the same structure as the one on the �n’s (see (7)), and can
also be solved in a sweep from the leaves of the factor graph. The marginals of μ for any
connected subset of variables can be easily expressed in terms of the solution of this set of
equations. For instance the marginal of a single variable reads

μ(σi) = g({νa→i}a∈∂i)(σi), (14)

while the variables of a constraint, conditioned to the value of one of them, are drawn ac-
cording to

μ(σa\i |σi; {ηj→a}j∈∂a\i ) = 1

z(σi, {ηj→a}j∈∂a\i )
ψa(σi, σ a\i )

∏

j∈∂a\i
ηj→a(σj ), (15)

where again z is a normalizing factor.
We have now to compute the distribution of the minimal size rearrangements when the

starting configuration σ is drawn from μ. The generation of σ can be performed in a re-
cursive broadcasting way: one first draws an arbitrarily chosen root variable σi according
to its marginal μ(σi). Because the factor graph is a tree, the law of the remaining variables
factorizes on the different branches around i,

μ(σ \i |σi) =
∏

a∈∂i

μ(σ a→i |σi). (16)

For each branch Fa→i one proceeds by drawing the variables of σa\i , conditioned on σi

(see (15)). Then the value of σj for each j ∈ ∂a \ i conditions the generation of σ j→a ,
which can itself be broken in subtrees as in (16). This process is repeated outwards until the
leaves of the tree are reached.

This observation leads us to introduce the distribution of the �n’s messages with respect
to the conditional distributions of the initial configuration,

q
(i→a,σi )

�n =
∑

σ i→a

μ(σ i→a|σi)δ�n,�ni→a(σi ,σ i→a),

q̂
(a→i,σi )

�n =
∑

σa→i

μ(σ a→i |σi)δ�n,�na→i (σ a→i )
.

(17)
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Combining the recursive computations of the messages �n expressed in (7) and the recursive
generation of the initial configuration σ leads to

q̂
(a→i,σi )

�n =
∑

σa\i
μ(σ a\i |σi; {ηj→a})

∏

j∈∂a\i

∑

�nj→a

q
(j→a,σj )

�nj→a
δ�n,f̃ ({�nj→a }), (18)

q
(i→a,σi )

�n =
∏

b∈∂i\a

∑

�nb→i

q̂
(b→i,σi )

�nb→i
δ�n,̃gσi

({�nb→i }), (19)

with the boundary condition given by q
(i→a,σi )

�n = δ�n,�o(σi ) for the leaves i. The distribution of
the m.s.r. for i when σ is drawn from μ can then be obtained from the distributions on the
edges neighboring i,

q(i)
n =

∑

σi

μ(σi)
∑

�n
q

(i,σi )

�n δn, min
τi �=σi

[�n]τi , q
(i,σi )

�n =
∏

a∈∂i

∑

�na→i

q̂
(a→i,σi )

�na→i
δ�n,̃gσi

({�na→i }). (20)

3.1.3 Average over the Choice of the Tree

At this point we define an ensemble of random rooted tree factor graphs on which we shall
perform the average of the m.s.r. distribution. The ingredients of the definition are pl , a
distribution on the positive integers, ρ(ψ) a distribution on the 0/1 constraint functions
(with possibly a random degree k), and a distribution of fields P(η). Let us denote TL a
random tree of the ensemble of depth L, and for notational simplicity T̂L the elements of
this ensemble conditioned on their root being of degree one. TL is defined by induction on L

as a (Galton–Watson like) branching process. T0 is made of a single variable node (the root)
to which is applied an external field η drawn from P . T̂L is generated by introducing a root
variable node i, connected to a single interaction node a whose constraint function ψa is
drawn from ρ. Then each variable node in ∂a \ i is taken to be the root of an independently
generated TL. Conversely TL+1 is made by identifying the roots of l (a random integer
drawn from pl) independent copies of T̂L.

For each tree drawn from this ensemble the two recursive computations yield a set of
messages on each edge of the factor graph directed towards the root, (η, {q(σ)

�n }q

σ=1) for an
edge from a variable to a constraint, (ν, {q̂(σ )

�n }q

σ=1) from a constraint to a variable. The ran-
domness in the definition of the tree turn these objects into random variables, whose distrib-
ution depends only on the distance between the considered edge and the leaves. To be more
precise, let us call PL(η, {q(σ)

�n }) the distribution of (μ(σi), {q(i,σi )

�n }) when i is the root of a
random TL tree, and similarly P̂L(ν, {q̂(σ )

�n }) for the distribution of the messages directed to
the root variable node of T̂L.

One can first notice that the recursion between the messages η, ν do not involve the
size distributions q�n and q̂�n, and thus define PL(η) as the marginal of PL disregarding
the q�n’s, and similarly P̂L(ν) from P̂L. PL and P̂L obey functional equations of the form
P̂L = F [PL], PL+1 = G[P̂L], with PL=0 = P , and where the functionals F and G have a
compact distributional writing,

ν
d= f (η1, . . . , ηk−1,ψ), η

d= g(ν1, . . . , νl). (21)

The first equation means that drawing a variable ν from P̂L amounts to drawing a constraint
function ψ from ρ, k − 1 i.i.d. variables ηi from PL and computing ν from (12). Similarly
PL+1 is obtained from P̂L thanks to (13), with the branching number l drawn from pl . In the
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following we shall assume that the distribution P on the boundary of the tree is a solution of
the fixed point functional equation P = G[F [P]]. This implies a stationarity property with
respect to the number of generation L, PL = P , P̂L = P̂ = F [P]. This justifies a posteriori
the choice we made of including non-trivial biases at the boundary in the law (11): in generic
models unbiased boundary conditions represented by P(η) = δ(η − η) do not satisfy this
stationary property, this will be in particular the case for the random k-SAT problem studied
below.

The evolution of the size distributions when iterating the tree construction is coupled,
through the term μ(σa\i |σi) of (18), to the η, ν messages. We are however interested in a
rather simple quantity, the average of the m.s.r. distribution of the root (see (20)) with respect
to the random tree. It is thus possible to compute an average of the q

(i→a,σi )

�n on an edge of
depth L, provided this average is conditioned on the value of the associated message ηi→a .
This conditional average, denoted q

(σ,L)

�n (η), and its counterpart q̂
(σ,L)

�n (ν), are then found to
obey the following equations,

q̂
(σ,L)

�n (ν)P̂(ν) = Eψ

∫
dP(η1) . . . dP(ηk−1)δ(ν − f (η1, . . . , ηk−1,ψ))

×
∑

σ1,...,σk−1

μ(σ1, . . . , σk−1|σ,η1, . . . , ηk−1,ψ)

×
∑

�n1,...,�nk−1

q
(σ1,L)

�n1
(η1) . . . q

(σk−1,L)

�nk−1
(ηk−1)δ�n,f̃ (�n1,...,�nk−1,ψ), (22)

q
(σ,L+1)

�n (η)P(η) =
∑

l

pl

∫
dP̂(ν1) . . . dP̂(νl)δ(η − g(ν1, . . . , νl))

×
∑

�n1,...,�nl

q̂
(σ,L)

�n1
(ν1) . . . q̂

(σ,L)

�nl
(νl)δ�n,̃gσ (�n1,...,�nl ), (23)

with the boundary condition q
(σ,L=0)

�n (η) = δ�n,�o(σ ). Finally the sought-for average m.s.r.d. for
the root of a random tree of depth L reads:

q(L)
n =

∫
dP(η)

∑

σ

η(σ )
∑

�n
q

(σ,L)

�n (η)δn,min
τ �=σ

[�n]τ . (24)

The numerical resolution of (22, 23) could at first sight seem rather difficult, as they in-
volve, for each value of the random variable η (or ν), q distributions of vectors �n. One can
however devise a simple method, generalizing the population dynamics algorithm of [30].
The important point is to notice that for a given value of σ , q

(σ,L)

�n (η)P(η) can be viewed as
a joint distribution of variables (η, �n(σ)), which can be numerically represented by a pop-
ulation of a large number N of couples {(ηi, �n(σ)

i )}Ni=1. The empirical distribution of these
couples is taken as an approximation (known as a particle approximation in the statistics
literature) of q

(σ,L)

�n (η)P(η). This suggests the following algorithm. Initialize a population
{ηi}Ni=1 drawn i.i.d. from P (this shall be itself performed by a standard population dynam-
ics approach), and associate to each of them q vectors, �n(σ)

i = �o(σ ). We thus have, for trees
of depth L = 0, a population {(ηi, �n(1)

i , . . . , �n(q)

i )}Ni=1. To take this population from depth L

to depth L + 1 one has to:

– generate in an i.i.d. way N elements (νj , �n(1)
j , . . . , �n(q)

j ), with j ∈ [N + 1,2N ] to avoid
notational confusion, by:
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• choosing randomly a constraint function ψ from ρ, and k − 1 indices i1, . . . , ik−1 uni-
formly at random in [1,N ];

• computing νj = f (ηi1 , . . . , ηik−1 ,ψ);
• for each σ ∈ [1, q]:

∗ generating a configuration (σ1, . . . , σk−1) according to the law μ(·|σ,ηi1 , . . . ,

ηik−1 ,ψ);

∗ computing �n(σ)
j = f̃ (�n(σ1)

i1
, . . . , �n(σk−1)

ik−1
,ψ).

– then generate a new population {(ηi, �n(1)
i , . . . , �n(q)

i )}Ni=1, repeating for each i ∈ [1,N ] in-
dependently the following steps:
• Choose randomly a degree l from pl and l indices j1, . . . , jl uniformly at random in

[N + 1,2N ].
• Compute ηi = g(νj1 , . . . , νjl ).
• For each σ ∈ [1, q], compute �n(σ)

i = g̃σ (�n(σ)
j1

, . . . , �n(σ)
jl

).

After L iterations of these two steps, for a given value of σ , an element (ηi, �n(σ)
i ) with i

uniformly chosen in [1,N ] is distributed with the joint law q
(σ,L)

�n (η)P(η).4 We can thus
complete the computation of q(L)

n in terms of a weighted histogram,

q(L)
n = 1

N

N∑

i=1

q∑

σ=1

ηi(σ )δ
n,min

τ �=σ
[�n(σ)

i
]τ . (25)

We shall now examine how this general formalism can be applied to the three exemplar
problems of XORSAT, COL and SAT.

3.2 k-XORSAT

3.2.1 On a Given Tree Factor Graph

Let us recall the factor graph representation of a k-XORSAT formula we use: the variables
are Ising spins σi = ±1, and each constraint node a is satisfied if and only if the product of
its k neighboring variables

∏
i∈∂a σi is equal to a given constant Ja = ±1. The computation

of the m.s.r., already performed in [27], is much simpler than the general case presented
above. Note first that for any CSP where variable can only take two values, a rearrangement
σ → τ is completely specified by its support, the set R of variables which are different
in the initial and final configurations. A second simplification is specific to the XORSAT
problem. Consider an initial solution σ and the configuration τ obtained by flipping the
variables in R. This second configuration is also a solution if and only if for each constraint
a, an even (possibly null) number of variables of ∂a are in R. A rearrangement for the
variable i is hence a set R verifying this condition and containing i. The m.s.r. ni is the
minimal cardinality of such a set of variables; on a tree this minimum can always be achieved
requiring that each a contains either zero or two (and not an higher even value) variables of
R. The recursive strategy for the computation of ni and the construction of a rearrangement
of this size amounts to constructing a m.s.r. Ra→i for all the branches Fa→i around i (their
sizes being denoted 1+na→i ) and to combining the rearrangements of the sub-factor graphs,

4We do not claim that (ηi , �n(1)
i

, . . . , �n(q)
i

) is drawn according to P(η)q
(1,L)

�n(1) . . . q
(q,L)

�n(q) , i.e. that the �n(σ)
i

are

independent conditionally on ηi , which is not true. The algorithm induces correlations between the various
values of σ , yet these are irrelevant for the linear averages we compute.
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R = {i}⋃
a∈∂i Ra→i . To construct Ra→i one has to choose exactly one variable j ∈ ∂a \ i

that minimizes the cost nj→a of the rearrangement in the branch Fj→a . Summarizing this
reasoning in formulas, we obtain:

na→i = min
j∈∂a\i

nj→a, ni→a = 1 +
∑

b∈∂i\a
nb→i , ni = 1 +

∑

a∈∂i

na→i . (26)

The reader will easily verify that (7, 8, 9, 10) of the general formalism reduce indeed to this
simple form, noting in particular that the m.s.r. is here independent of the initial configura-
tion, as appears clearly from the geometric characterization of the optimal supports R.

3.2.2 Random Tree

This independence with respect to the initial configuration allows to skip the second step of
the general formalism, as for a given tree the distribution of the m.s.r. is trivially concen-
trated on a single integer, and to study directly the ensemble of random tree formula. We
shall follow the general definition of TL given above, with a Poisson law of parameter αk

for the branching probability pl , and all constraint nodes of degree k. For definiteness one
can assume that the boundary condition is free (no bias on the leaves of the tree) and that
Ja = ±1 with probability one half; these last two choices are in fact irrelevant, as the m.s.r.
depends only on the geometry of the factor graph.

This random ensemble induces a probability law q(L)
n for the m.s.r. of the root of TL,

and an associated law q̂(L)
n for the message sent to the root of T̂L. Simplifying (22, 23, 24)

of the general formalism, or interpreting the specific ones (26) in a distributional sense,
leads to

q̂(L)
n =

∑

n1,...,nk−1

q(L)
n1

. . . q(L)
nk−1

δn,min[n1,...,nk−1], (27)

q(L+1)
n =

∞∑

l=0

e−αk(αk)l

l!
∑

n1,...,nl

q̂(L)
n1

. . . q̂(L)
nl

δn,1+n1+···+nl
, (28)

with the initial condition q(L=0)
n = δn,1.

These equations can be solved by a simplified version of the population dynamics al-
gorithm introduced in the general case. The distributions q(L)

n and q̂(L)
n are represented by

samples of integers {ni}, each element of the population associated to q(L+1)
n is generated

by drawing a Poisson distributed integer l, extracting at random l elements of the sample
representing q̂(L)

n and computing their sum plus one. Conversely the elements of q̂(L)
n are

the minimum of k − 1 randomly chosen integers drawn from the population encoding q(L)
n .

In the following we shall be interested in the L → ∞ limit, which is the counterpart of the
N → ∞ thermodynamic limit of the original random graph ensembles. One could reach
it numerically by repeated iterations of the population dynamics step. There is however a
simpler numerical method which allows to perform analytically this limit.

Let us first define the integrated version of the m.s.r.d.,

Q(L)
n =

∑

n′≥n

q
(L)

n′ , (29)
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which gives the probability of a m.s.r. being larger than n. A few simple properties follow
from this definition,

q(L)
n = Q(L)

n − Q
(L)

n+1, Q(L)
n = 1 −

∑

n′<n

q
(L)

n′ , lim
n→∞Q(L)

n = 0. (30)

A slightly less obvious property is that, for a fixed value of n, Q(L)
n is monotonously increas-

ing with L. This arises from the fact that larger trees have larger rearrangements, and can be
proven from (27, 28) via a standard stochastic domination argument [31]. Being moreover
bounded from above by 1, Q(L)

n converges as L goes to infinity, to a limit we shall denote
Qn. By continuity in the first equality of (30) the limit qn of q(L)

n also exists; same statements
apply to Q̂n and q̂n. Equation (27) can be rewritten as Q̂(L)

n = (Q(L)
n )k−1, in the infinite L

limit we thus obtain:

Q̂n = Qk−1
n , (31)

qn =
∞∑

l=0

e−αk(αk)l

l!
∑

n1,...,nl

q̂n1 . . . q̂nl
δn,1+n1+···+nl

. (32)

These limit distributions can now be determined by a recursion on n. Equation (28) implies
that q

(L)

1 = e−αk for all L ≥ 1; hence q1 = e−αk , which fixes the starting point of the recur-
sion. Assume qn has been computed up to rank m. This means that Qn = 1 − ∑

n′<n qn′ is
known up to rank m + 1, and the same is true for Q̂n because of (31). We thus have at our
disposal the values of q̂n up to n = m, which allows the computation of qm+1 through (32).
We defer the presentation of the numerical results obtained in this way until Sect. 4, in order
to confront them with the COL and SAT problems.

Let us only anticipate one feature by emphasizing that the limit L → ∞ was taken here
at a fixed value of n. We shall see that for some values of α the limits L,n → ∞ do not
commute, a situation reminiscent of a percolating regime. In such cases Qn tends for large n

to a strictly positive value φ, qn is not normalized anymore and cannot be directly considered
as the distribution of an integer random variable n. It will be however convenient to formally
consider n as an extended integer, with a probability φ of being infinite.

3.3 q-COL

3.3.1 Given Tree, Given σ

The second example of CSP we shall consider is the q-coloring problem. The variables σi

can take one of the q values (colors) in {1, . . . , q}, and the constraint node a linking two
variables i and j forbids the configurations with σi = σj . The solutions of this CSP are thus
the proper colorings of the underlying graph.

At variance with the XORSAT problem, the m.s.r. does depend on the initial satisfying
assignment: take for instance a small graph made of a central site i with q−1 neighbors. If in
the initial coloring all the peripheral sites have distinct colors, the minimal size to rearrange
i is two. Otherwise, if at least two peripheral sites have the same color, there is one color
available for the central site to be rearranged without modifying its neighborhood.

There is however room for simplifications with respect to the general formalism.
Consider the constraint a between two adjacent vertices i and j . The vectorial mes-
sage �na→i (σ a→i ) has only one non-zero component, corresponding to the perturbation
σi → τi = σj . This is a formal consequence of (8), but has a very intuitive meaning: in the
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cavity graph Fa→i the root σi can be given any value τi �= σj without having to propagate the
rearrangement. We can thus get rid of the vectorial character of the messages. Note also that
the information contained in the messages �na→i and �nj→a is redundant, as each constraint
node involves only two variables. We shall thus eliminate the variable to constraint mes-
sages, and rename nj→i (σ j→i ) what was denoted in the general formalism [�na→i (σ a→i )]σj

.
Simplifying (7–10) with these new notations, we obtain

nj→i (σ j→i ) = 1 + min
τj �=σj

{ ∑

k∈∂j\i
δσk,τj nk→j (σ k→j )

}
, (33)

ni(σ ) = 1 + min
τi �=σi

{∑

j∈∂i

δσj ,τi nj→i (σ j→i )

}
, (34)

with nj→i (σj ) = 1 if j is a leaf of the tree. The interpretation of these equations is clear:
to modify the color σi of a vertex i in a coloring σ one has to probe the q − 1 possibilities
of τi �= σi , and follow the effect of this modification in the branches Fj→i that become
unsatisfied, i.e. those who had σj = τi before the modification.

3.3.2 Given Tree, Distribution with Respect to σ

We shall study in the coloring case the distribution of the m.s.r. with respect to the measure
μ(σ) uniform on the proper colorings. In other words we use a free boundary condition
and do not impose any external field on the leaves. This choice preserves the permutation
symmetry among colors, which implies that the marginal distribution μ(σi) of any variable i

is uniform over the q possible values. Once the color of an arbitrary root variable i has been
chosen, the generation of the remaining sites can be done in a recursive way: the colors of
the neighbors of i are drawn independently, uniformly over the q −1 colors distinct from σi ,
and this process is repeated from i outwards. Exploiting this symmetry and the recursions
(33, 34), one finds that the distributions of the m.s.r. with respect to the uniform choice of
the initial proper coloring is given by

q(i)
n = 1

(q − 1)|∂i|
∏

j∈∂i

∑

σj �=1
nj→i

q(j→i)
nj→i

I

(
n = 1 + min

σ �=1

[∑

j∈∂i

δσ,σj
nj→i

])
, (35)

where the distributions of the messages on the edges of the tree are solutions of

q(j→i)
n = 1

(q − 1)|∂j |−1

∏

k∈∂j\i

∑

σk �=1
nk→j

q(k→j)
nk→j

I

(
n = 1 + min

σ �=1

[ ∑

k∈∂j\i
δσ,σk

nk→j

])
, (36)

with the boundary condition q
(j→i)
n = δn,1 when j is a leaf.

3.3.3 Average over the Choice of the Tree

We now consider the ensemble of random trees TL where the variable nodes have a Pois-
sonian branching probability of mean c, and all constraint nodes are identical, ψ(σi, σj ) =
I(σi �= σj ). One can easily show from (35, 36) that the m.s.r.d. for uniformly distributed
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initial proper colorings, averaged over this random tree ensemble is given by

q(L+1)
n =

∞∑

l=0

e−ccl

l!
1

(q − 1)l

q∑

σ1,...,σl=2

∑

n1,...,nl

q(L)
n1

. . . q(L)
nl

I

(
n = 1 + min

σ=2,...,q

[
l∑

i=1

δσ,σi
ni

])
,

(37)
with q(L=0)

n = δn,1. This equation could be solved following the population dynamics ap-
proach explained above. One can however unveil a formal equivalence with the computation
performed for the XORSAT problem. Consider indeed the random variables lσ which counts
in (37) the number of σi ’s assigned to the value σ . Conditional on l the lσ ’s are multino-
mially distributed; as l is itself a Poisson random variable the lσ turn out to be independent
Poisson random variables. This allows to rewrite (37) as

q(L+1)
n =

∞∑

l2,...,lq=0

e−c(c/(q − 1))l2+···+lq

l2! . . . lq !
∑

m2,...,mq

δn,min[m2,...,mq ]

×
q∏

σ=2

( ∑

n1
σ ,...,n

lσ
σ

q
(L)

n1
σ

. . . q
(L)

n
lσ
σ

δ
mσ ,1+n1

σ +···+n
lσ
σ

)
. (38)

Comparing with (27, 28) one realizes that the solution of the coloring case can be di-
rectly read off from the study of the XORSAT one with a simple translation of the para-
meters,

q(L,COL)
n [q, c] = q̂(L,XORSAT)

n

[
k = q,α = c

q(q − 1)

]
. (39)

In particular the simple recursion on n to solve directly in the L → ∞ limit is still applicable
to the coloring problem.

3.4 k-SAT

3.4.1 Given Tree, Given σ

We consider now the third example of CSP, in which the factor graph encodes a
k-satisfiability formula. The boolean variables are represented by Ising spins σi = ±1; each
constraint node a is linked to k variable nodes, and is unsatisfied if and only if these k

variable all takes their unsatisfying value, σi = J a
i for all i ∈ ∂a. We shall denote ∂+i(a)

(resp. ∂−i(a)) the set of clauses in ∂i \ a agreeing (resp. disagreeing) with a on the sat-
isfying value of σi . We also denote ∂σ i the set of clauses in ∂i which are satisfied by
σi = σ .

Because of the boolean nature of the variables a rearrangement is specified by the set of
variables to be flipped (recall the discussion of the XORSAT problem), we can get rid of the
vectorial character of the general formalism and denote, for instance, ni(σ ) for the m.s.r. of
the variable i under the perturbation σi → τi = −σi . This quantity does depend on the initial
satisfying assignment. In the simplest case where there is one single constraint node a in the
factor graph, ni(σ ) = 2 if a was satisfied only by i before its flip, ni(σ ) = 1 for all the other
satisfying assignments. Generalizing this observation to generic factor graphs, one reduces
the recursion relations of the general formalism (see (7–10)) to:

na→i (σi, σ a→i ) =
{

min
j∈∂a\i

nj→a(σj , σ j→a) if σi = −J a
i and σj = J a

j ∀j ∈ ∂a \ i,

0 otherwise,
(40)
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ni→a(σi, σ i→a) = 1 +
∑

b∈∂i\a
nb→i (σi, σ b→i ), (41)

ni(σ ) = 1 +
∑

a∈∂i

na→i (σi, σ a→i ), (42)

with again ni→a(σi) = 1 for the leaves of the graph.

3.4.2 Given Tree, Distribution with Respect to σ

We now consider the probability law μ(σ) on the initial satisfying assignments, with exter-
nal fields on some of the leaves of the graph. More precisely, we use the form (11), with the
biases on a subset B of the leaves parameterized by a real hext,i :

ηext,i (σi) = 1 + σi tanhhext,i

2
. (43)

The messages νa→i and ηi→a are probability laws of Ising spins and can thus be parameter-
ized by a single real. To simplify the notations we make a gauge transformation with respect
to the value of the variable satisfying the clause and define

νa→i (σi) = 1 − J i
aσi tanhua→i

2
, ηi→a(σi) = 1 − J i

aσi tanhhi→a

2
. (44)

With these conventions (12, 13) become

ua→i = f ({hj→a}j∈∂a\i ), f (h1, . . . , hk−1) = −1

2
ln

(
1 −

k−1∏

i=1

1 − tanhhi

2

)
, (45)

hi→a =
∑

b∈∂+i(a)

ub→i −
∑

b∈∂−i(a)

ub→i , (46)

with hi→a = −J a
i hext,i if i is a leaf in B , 0 if it is a leaf not in B . The solution of these

equations allows to compute the two quantities that we shall need below:

• the marginal law of σi ,

μ(σi) = 1 + σi tanhhi

2
, hi =

∑

a∈∂+i

ua→i −
∑

a∈∂−i

ua→i; (47)

• the probability that, conditional on σi satisfying the constraint a, all other variables in ∂a

take their wrong values,

μ(σj = J a
j ∀j ∈ ∂a \ i|σi = −J a

i ) =
∏

j∈∂a\i

1 − tanhhj→a

2
. (48)

We now proceed with the introduction of the distributions q̂
(a→i,σi )
n (resp. q(i→a,σi )

n ) of the
messages na→i (σi, σ a→i ) (resp. ni→a(σi, σ i→a)) when σ a→i (resp. σ i→a) is drawn condi-
tionally on σi . In fact for each directed edge the distribution corresponding to one of the two
values of σi can be discarded. Consider first the cavity factor graph Fa→i . If σa→i is drawn
conditionally on σi not satisfying constraint a, necessarily one of the k−1 other variables of
a will satisfy it so that σi can be flipped without propagating the rearrangement further in the
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branch. This is translated in formula as q̂
(a→i,σi=Ja

i
)

n = δn,0, we shall thus simplify notation

and write q̂(a→i)
n instead of q̂

(a→i,σi=−Ja
i

)

n for the only non-trivial size distribution born by the
edge a → i. This last quantity, in virtue of (18), has to be expressed in terms of the distribu-

tions q
(j→a,σj )
n for j ∈ ∂a \ i. However the rearrangement has to be propagated only if none

of these variables were satisfying constraint a, we can thus rename q
(j→a)
n ≡ q

(j→a,σj =Ja
j

)

n

and forget about q
(j→a,σj =−Ja

j
)

n . Collecting these various observations we obtain

q̂(a→i)
n =

∏

j∈∂a\i

∑

nj→a

q(j→a)
nj→a

[(
1 −

∏

j∈∂a\i

1 − tanhhj→a

2

)
δn,0

+
( ∏

j∈∂a\i

1 − tanhhj→a

2

)
δn,min{nj→a }

]
, (49)

q(i→a)
n =

∏

b∈∂−i(a)

∑

nb→i

q̂ (b→i)
nb→i

δn,1+∑
nb→i

, (50)

with q(i→a)
n = δn,1 on the leaves. Finally the law of the m.s.r. for i is given by

q(i)
n =

∑

σ

1 + σ tanhhi

2

∏

a∈∂σ i

∑

na→i

q̂ (a→i)
na→i

δn,1+∑
na→i

. (51)

3.4.3 Average over the Choice of the Tree

We shall study random trees TL with a Poissonian law of mean αk for the branching proba-
bility pl of variable nodes. The constraint nodes are all of degree k with the signs J a

i of the
unsatisfying literals i.i.d. random variables equal to ±1 with equal probability. This implies
that the cardinality of the neighborhoods ∂+i and ∂−i of the root are two independent Pois-
son random variables of mean αk/2, whose law shall be denoted pl+,l− . The same statement
is true for ∂+i(a) and ∂−i(a) in the bulk of the tree. The last element defining TL is the
distribution P(h) for the biases on the leaves of depth L of the tree. Following the general
formalism we assume this distribution to be stationary under the iterations

u
d= f (h1, . . . , hk−1), h

d=
l+∑

i=1

u+
i −

l−∑

i=1

u−
i , (52)

where l± are drawn from pl+,l− and the hi (resp. the u±
i ) are independent copies drawn

from P(h) (resp. P̂(u)). The computation proceeds with the introduction of q(L)
n (h) (resp.

q̂(L)
n (u)), the average of the q(i→a)

n (resp. q̂(a→i)
n ) conditioned by the event hi→a = h (resp.

ua→i = u). The generic equations (22, 23) translate into

q̂(L)
n (u)P̂(u) =

∫ k−1∏

i=1

dP(hi)δ(u − f (h1, . . . , hk−1))

×
∑

n1,...,nk−1

k−1∏

i=1

q(L)
ni

(hi)

[(
1 −

k−1∏

i=1

1 − tanhhi

2

)
δn,0

+
(k−1∏

i=1

1 − tanhhi

2

)
δn,min[n1,...,nk−1]

]
, (53)
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q(L+1)
n (h)P(h) =

∞∑

l+,l−=0

pl+,l−

∫ l+∏

i=1

dP̂(u+
i )

l−∏

i=1

dP̂(u−
i )δ

(
h −

l+∑

i=1

u+
i +

l−∑

i=1

u−
i

)

×
∑

n1,...,nl−

l−∏

i=1

q̂(L)
ni

(u−
i )δn,1+n1+···+nl− , (54)

with q(L=0)
n (h) = δn,1. Finally the sought-for average m.s.r.d. for the root of TL reads

q(L)
n =

∫
dP(h)(1 − tanhh)q(L)

n (h), (55)

which is obtained from (51) by using the statistical equivalence between positive and neg-
ative literals. This implies in particular that h has a symmetric distribution, so that q(L)

n is
well normalized.

The adaptation of the general population dynamics algorithm to this case is simple. The
joint distribution q(L)

n (h)P(h) is represented by a sample of couples {(hi, ni)}Ni=1, initialized
with ni = 1 and the hi ’s distributed according to P(h) (thanks to preliminary population
dynamics steps). The recursion over L amounts to generating a sample {(uj , nj )}, where for
each j one selects k −1 indices i1, . . . , ik−1 in [1,N ]. uj is set to f (hi1 , . . . , hik−1), nj to the
minimum of {ni1 , . . . , nik−1} with probability 1 − exp[−2uj ], to 0 otherwise. In the converse
step for each new element i two Poisson integers l± of mean αk/2 are independently drawn,
then two sets of indices J+ and J− of cardinalities l+ and l− are generated. hi is given by∑

j∈J+ uj −∑
j∈J− uj , while ni reads 1+∑

j∈J− nj . From (55) we obtain q(L)
n as a weighted

histogram of the population,

q(L)
n = 1

N

N∑

i=1

(1 − tanhhi)δn,ni
. (56)

The large L limit is obtained by repeating a sufficient number of these steps to achieve
convergence within numerical precision.

4 The Freezing Transition in Random Tree Ensembles

In the previous section we have established numerical procedures to compute the average
m.s.r.d. qn for the various random tree ensembles, based either on a simple recurrence over
n for the XORSAT and COL case, or on a more elaborate population dynamics algorithm
for SAT. We now discuss the outcome of these computations, the limit of infinite depth trees
(L → ∞) being kept implicit.

In Fig. 3 we have plotted the integrated distribution Qn, for various values of α, in the
XORSAT and SAT case. These two families of curves present the same striking feature:
when α is increased Qn develops a plateau, in other words qn becomes bimodal with a pos-
itive fraction of rearrangements shifting towards larger and larger values. When a critical
value αp is reached the length of the plateau becomes infinite. This transition is thus de-
scribed by the order parameter φ = limn→∞ Qn, which represents the fraction of percolating
optimal rearrangements whose size diverge with L. From the point of view of the order
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Fig. 3 Integrated average distribution of minimal size rearrangements in tree ensembles. Left: random
3-XORSAT, from left to right α = 0.4, 0.7, 0.78, 0.8, 0.81, 0.815, αp. The dashed horizontal line is the
order parameter at the transition, φp ≈ 0.715332. Right: random 3-SAT, from left to right, α = 3, 4, 4.3,
4.36, 4.39, 4.40, 4.41. The dashed line indicates φp ≈ 0.74

parameter the transition is discontinuous, φ jumps from 0 to a positive value φp when the
threshold αp is crossed.

Let us follow the interpretation suggested at the end of Sect. 3.2.2 of Qn being the distri-
bution of an extended integer which has probability φ of being infinite. With the rules that
the minimum of several such extended integers is infinite if and only if each of them is infi-
nite, while their sum is infinite as soon as one of them is so, (31, 32) imply in the XORSAT
case

φ̂ = φk−1, φ = 1 − exp[−αkφ̂], (57)

where we denoted φ̂ = lim Q̂n. This can be closed under the form φ = 1 − exp[−αkφk−1],
with αp being the smallest value of α for which there exists a non-trivial solution. At αp this
solution appears discontinuously, with the positive value φp corresponding to the height of
the plateau in the curves of Qn. For larger values of α there are two non-trivial solutions,
the relevant one being the largest. Numerical values of αp and φp are given in Table 1 for a
few values of k.

Thanks to the formal equivalence between XORSAT and COL summarized in (39) we
immediately obtain the equation on the order parameter of the COL freezing transition and
the critical value cp (see also Table 1 for their numerical values),

φ =
(

1 − exp

[
− cφ

(q − 1)

])q−1

, c(COL)
p [q] = q(q − 1)α(XORSAT)

p [k = q]. (58)

The initiated reader will recognize the order parameter as the fraction of hard fields in the
solution of the 1RSB equations at m = 1 given in [22]; we shall come back on this point
later on.

The determination of the threshold αp is slightly more involved in the SAT problem. We
have indeed a family of distributions qn(h), q̂n(u) indexed by a real h, u; it is thus necessary
to define for each of them an order parameter φ(h), φ̂(u), as the fraction of infinite values
of n born by qn(h), q̂n(u). The equivalent of (57) takes now a functional form easily derived
from (53, 54),

φ̂(u)P̂(u) =
∫ k−1∏

i=1

dP(hi)δ(u − f (h1, . . . , hk−1))

k−1∏

i=1

1 − tanhhi

2
φ(hi), (59)
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φ(h)P(h) =
∞∑

l+,l−=0

pl+,l−

∫ l+∏

i=1

dP̂(u+
i )

l−∏

i=1

dP̂(u−
i )

× δ

(
h −

l+∑

i=1

u+
i +

l−∑

i=1

u−
i

)(
1 −

l−∏

i=1

(1 − φ̂(u−
i ))

)
. (60)

From the solution of these equations the order parameter of the average m.s.r.d. is obtained
(see (55)) as φ = ∫

dP(h)(1 − tanhh)φ(h). Again, φ is the fraction of hard fields in the
m = 1 1RSB equations of [23], this connection shall be discussed further in Sect. 6.3 and
Appendix 2. A solution of the functional equation on φ(h) can be sought by a population
dynamics algorithm: the distribution P(h) being represented by a sample {hi}, we associate
to each of them an estimation φi of φ(hi) and consider a population of couples {(hi, φi)}Ni=1.
From this a new population {uj , φ̂j }2N

j=N+1 is generated according to (59): for each element
of the new population k − 1 indices i1, . . . , ik−1 are chosen uniformly at random in [1,N ]
and the new couple (uj , φ̂j ) is computed as

(uj , φ̂j ) =
(

f (hi1 , . . . , hik−1),

k−1∏

m=1

1 − tanhhim

2
φim

)
. (61)

In turns the sample {(hi, φi)} is generated from the {ui, φ̂i}’s according to (60), and an
estimation for the order parameter is computed as

φ = 1

N

N∑

i=1

(1 − tanhhi)φi . (62)

These two steps are iterated a large number of times, starting with the initial condition
φ(h) = 1, i.e. φi = 1 for all elements of the initial population. For small values of α the
function φ(h) converges to 0 upon these iterations, while for larger values a non-trivial
fixed point is reached. The numerical estimation of the threshold αp separating these two
regimes, along with the deduced order parameter at the transition, are presented in Table 1.
The precision on these numbers is rather low; indeed, strong finite N effects make difficult a
precise determination of the discontinuous disappearance of the non-trivial solution. More-
over the numerical method becomes difficult for large values of k, hence the limitation of
the results presented to k ∈ [3,6]. For k = 3 φp can also be successfully compared on the
right part of Fig. 3 with the plateau in the numerically determined Qn.

The discontinuous character of the transition exhibited by the jump of the order parameter
should not hide the strong precursor effects, usually associated to continuous transitions,
present in the low connectivity phase. The existence of a diverging scale of rearrangement
sizes is indeed obvious on Fig. 3. One can for instance define nε(α) as the point where Qn

crosses a threshold ε. This scale nε(α) diverges at αp (as long as 0 < ε < φp), in other words
arbitrary large rearrangements are present with positive probability sufficiently close to the
transition. A detailed study of the XORSAT problem [27], drawing on a formal analogy
with the mode-coupling theory of supercooled liquids [32], revealed that the divergence of
nε is algebraic, nε ∼ (αp − α)−ν . This exponent ν is the solution of an universal type of
relations,

ν = 1

2a
+ 1

2b
,

2(1 − a)

(1 − 2a)
= 2(1 + b)

(1 + 2b)
= λ, (63)
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Table 1 Threshold, order parameter and critical exponents for the freezing transition in random tree ensem-
bles

k, q XORSAT COL XORSAT and COL

αp φp cp φp λ a b ν

3 0.818469 0.715332 4.910815 0.511700 0.397953 0.422096 1.221834 1.593787

4 0.772280 0.851001 9.267358 0.616297 0.350174 0.433412 1.341647 1.526313

5 0.701780 0.903350 14.035605 0.665924 0.320971 0.439997 1.421808 1.488035

6 0.637081 0.930080 19.112434 0.695986 0.300707 0.444431 1.481191 1.462601

7 0.581775 0.945975 24.434557 0.716600 0.285554 0.447677 1.527913 1.444121

8 0.534997 0.956381 29.959848 0.731841 0.273649 0.450187 1.566174 1.429899

9 0.495255 0.963661 35.658363 0.743697 0.263961 0.452205 1.598411 1.418505

10 0.461197 0.969008 41.507763 0.753261 0.255868 0.453873 1.626162 1.409102

k, q SAT

αp φp λ a b ν

3 4.40 0.74 0.55 0.38 0.90 1.87

4 10.55 0.86 0.40 0.42 1.22 1.60

5 21.22 0.91 0.33 0.44 1.40 1.50

6 39.87 0.93 0.31 0.44 1.45 1.47

Fig. 4 The exponent a

(respectively −b) is the positive
(respectively negative) root of the
equation represented here,
see (63)

where  denotes Euler’s special function (see Fig. 4) and λ a k-dependent parameter in
[0,1]. In fact a and b are also critical exponents governing the asymptotic behavior of Qn

around its plateau, see Appendix 1 for details. The non-universal parameter λ was found [27]
to be, in the XORSAT case,

λ(XORSAT) = k − 2

αpk(k − 1)φk−1
p

. (64)

Numerical values of this parameter and the associated exponents a, b, ν can be found in
Table 1. Because of (39) the exponents for the q-coloring are exactly the same as the one of
k-XORSAT, provided one identifies k and q . It will be useful for future discussion to rewrite
the parameter λ under the form

λ(COL) = (q − 2)
1 − φ

1/(q−1)
p

φ
1/(q−1)
p

. (65)
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The asymptotic behavior of the distribution qn for SAT could be a priori more compli-
cated, because of the underlying infinity of distributions qn(h). We shall however argue in
Appendix 1 that the phenomenology remains the same, in particular the exponents a, b and
ν are still given by (63). The parameter λ is now

λ(SAT) = 2k(k − 2)

αpk(k − 1)φk−1
p

, (66)

the expression (64) being only modified by a scale factor 2k on the connectivity. The value of
λ can thus be determined from the numerical evaluation of αp and φp explained above (see
Table 1 for the results). The technical details of the analysis, along with numerical evidence
supporting it, can be found in Appendix 1.

5 A Digression about the Reconstruction Problem

It is instructive, and shall be useful for the discussion of the following section, to recon-
sider the freezing transition from a slightly different perspective, namely the problem of tree
reconstruction [33]. For simplicity we consider first the q-colorings of regular trees with
L + 1 generations, where every vertex has degree l + 1 (apart from the root which has de-
gree l and from the leaves of degree 1). The generation of an uniform proper coloring can
be seen as a broadcasting process: the color of the root being chosen, each of its sons has a
color uniformly chosen among the q − 1 other ones, and this is propagated until the leaves
of depth L have been reached. In an information theoretic vision the color of the root is
an information transmitted through a noisy channel, the tree. The reconstruction problem
consists in inferring the color of the root given the observation of the colors of the leaves,
while the rest of the coloring is hidden to the observer. Depending on the values of (l, q) a
correlation between the color of the root and the one of the leaves survives or not the limit
L → ∞. An optimal algorithm will be able to infer the value of the root from the obser-
vation of the leaves with a probability of success larger than the one of a random uniform
guess if and only if this correlation remains positive. In this case the reconstruction problem
is said to be solvable, which can also be formulated as the non-extremality (or impurity) of
the free-boundary Gibbs measure [34] on the infinite tree. On general grounds one expects
a critical value ld(q) separating a solvable regime for l ≥ ld(q) and an unsolvable one when
l < ld(q). The values ld(3) = 5, ld(4) = 8, ld(5) = 13 and ld(6) = 17 have been conjectured
in [35], along with rigorous bounds ld(3) ≤ 5, ld(4) ≤ 9, ld(5) ≤ 13 and ld(6) ≤ 17.

A very naive, suboptimal algorithm to perform this inference proceeds from the leaves
towards the root, according to the following rule: if the set of colors on the descendants of
a vertex i contains q − 1 distinct elements in [1, q], the remaining color is assigned to the
vertex σi . Otherwise it is assigned a neutral color, say white, σi = 0. It is easy to realize that
at the end of the execution of this algorithm, starting from the observation of the leaves of a
proper coloring, the vertices in the interior of the tree are either white or have been assigned
the correct value they had in the initial coloring. What is the probability φL (with respect to
the choice of the initial coloring) that the root is correctly reconstructed in such a way? For
this to be possible, q − 1 distinct colors had to be assigned to its sons in the initial coloring,
and for each color at least one of them had to be correctly reconstructed. φL can thus be
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determined by recurrence according to φL+1 = V (φL), with

V (φ) = 1

(q − 1)l

∑

l1,...,lq−1∑
li=l

l!
l1! . . . lq−1!

q−1∏

i=1

(1 − (1 − φ)li )

=
q−1∑

p=0

(
q − 1

p

)
(−1)p

(
1 − p

q − 1
φ

)l

, (67)

and φL=0 = 1. The limit of φL for large L is the largest solution of the fixed-point equation
φ = V (φ) on the interval [0,1]. Depending on the values of q and l this limit is either zero
(for instance V vanishes identically if l < q − 1 as there are not enough descendants for the
root to be fully constrained) or strictly positive. By numerical inspection of (67) we found
the latter case to happen when l ≥ lp(q), with lp(3) = 5, lp(4) = 9, lp(5) = 14 and lp(6) = 19.
This means that the algorithm has a positive probability of guessing correctly the root from
the observation of arbitrarily distant leaves when l ≥ lp(q), whereas it is doomed to fail
if l < lp(q). The reasoning presented here is essentially a constructive proof of the bound
ld(q) ≤ lp(q), weaker yet conceptually much simpler than the rigorous bound of [35]. Let us
underline that such a reconstruction procedure is far from optimal; we only retain the infor-
mation given by a drastic event, when the color of a vertex is unambiguously determined by
its descendants, and discard the cases where one color is only more probable than the others.

This naive reconstruction algorithm is in a sense dual with the main subject of the paper:
it correctly infers the color of the root if and only in all proper colorings with the observed
assignment of the leaves the root takes always the same color. In other words in all rearrange-
ments (not necessarily of minimum size) for the root starting from the initial coloring at least
one site on the boundary of the tree has to be rearranged. This can be determined using the
recursion relation on the sizes of the minimal rearrangements (for instance (33, 34) in the
case of the coloring) with a different boundary condition, ni→j = ∞ when i is a leaf of
the tree. The value ni computed with this boundary condition will be infinite if there are no
rearrangements of the root which can avoid rearranging the leaves (the algorithm is success-
ful), finite otherwise (the root is white at the end of the algorithm). This difference in the
boundary condition (ni→j = ∞ vs 1) is irrelevant in the large L limit: m.s.r. of finite size
have supports of finite depth, hence are not affected by the boundary when L gets larger than
this depth, while m.s.r. of sizes growing with L are correctly assigned their formal infinite
size in this way.

To summarize the connection between this section and the rest of the paper, the con-
straints that imply large rearrangements are precisely the information exploited in the naive
reconstruction procedure. The probability of success of the algorithm on arbitrarily large
trees can thus be identified with the order parameter of the freezing transition introduced
in the previous section. This identification holds for generic CSPs on random trees, pro-
vided one averages the success probability of the naive reconstruction over the ensemble of
trees. Another suggestive perspective on the problem is given in terms of percolation. The
order parameter can indeed be viewed as the probability of percolation of the support of
the rearrangement from the root to an infinitely distant boundary. In the case of XORSAT
this percolation is purely geometrical and corresponds to the existence of an infinite subtree
where all variable nodes have degree greater than two. For COL and SAT the object which
percolates is subtler: the rearrangements depend both on the geometry of the factor graph
and on its initial solution.
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6 From Random Trees to Random Graphs

6.1 Local and Global Aspects of the Cavity Method

We turn now to the more delicate issue of the validity of the results derived in the random
tree ensembles for the original random graphs. As mentioned in Sect. 2 the latter have a local
tree structure, with high probability in the thermodynamic limit. The point thus amounts to
giving a description of the boundary condition induced by the rest of the factor graph. We
shall handle this problem in the framework of the cavity method [11, 36] for sparse random
graphs [30] (see also [35, 37] for related discussions) that we briefly survey below.

Consider a G(N,M)5 random factor graph F with N variable nodes and M = αN con-
straint nodes of degree k, the associated random measure on XN ,

μ(σ) = 1

Z

M∏

a=1

ψa(σ a), (68)

and suppose the weights ψa are i.i.d. positive random functions on X k (not necessarily {0,1}
valued).

Two kind of intertwined properties of the model can be investigated: thermodynamic
(global) ones, with the characterization of the random variable Z, and local ones, concerning
the behavior of the measure μ itself. Because of the self-averaging properties of lnZ for
large graphs the central thermodynamic quantity is the quenched free-entropy density,

� = lim
N→∞

1

N
E lnZ. (69)

The latter aspect of the problem, which is the important one for our present concerns, can be
formulated as follows. Call FL the sub-factor graph induced in F by the variable nodes at
a graph distance smaller than L from an arbitrary root i, and σL the configuration of these
variable nodes. As we are interested in the thermodynamic limit with L finite we can assume
without harm that FL is a tree. The marginalization of (68) leads to a law μL for σL; it can
be seen as a random measure, conditioning F on a given realization of FL, because of the
choices in F \ FL. At this point a question arises naturally: what is the (weak) limit of μL

when the thermodynamic limit is taken?
The cavity method provides a series of possible answers to this question, and an heuristic

to choose the right one. Let us introduce some notations: we denote b the number of sites in
the boundary B made of the sites at distance exactly L from i, B = {i1, . . . , ib}, and define a
measure on σL with external fields ηj (probability measures on X ) acting on this boundary:

μ(0)(σL;η1, . . . , ηb) = 1

Z0(η1, . . . , ηb)

∏

a∈FL

ψa(σ a)

b∏

j=1

ηj (σij ), (70)

where Z0 ensures the normalization of the law.
The statement of the simplest (so-called Replica-Symmetric, RS) situation described by

the cavity method is

μL(·) d→ μ(0)(·;η1, . . . , ηb), (71)

5Random hypergraphs with arbitrary degree distributions can be studied similarly.
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where the ηi are i.i.d. from a distribution P(0). Roughly speaking, this is true when μ is
a (finite size) pure state, so that the effect of F \ FL on the boundary variables can be
factorized. In more complicated situations there is a large number of pure states on which
the Gibbs measure has to be decomposed for this factorization to be possible.6 We shall thus
introduce a new measure on σL as a weighted superposition of different μ(0),

μ(1)(σL;P (1)

1 , . . . ,P
(1)
b ,m)

= 1

Z1[P (1)

1 , . . . ,P
(1)
b ;m]

∫ b∏

i=1

dP
(1)
i (ηi)μ

(0)(σL;η1, . . . , ηb)Z0(η1, . . . , ηb)
m. (72)

In this definition m ∈ [0,1] is known as the Parisi breaking parameter, the P
(1)
i ’s are distrib-

utions of fields, and again Z1 is a normalization. The hypothesis of the cavity method at the
level of one step of Replica-Symmetry Breaking (1RSB) reads

μL(·) d→ μ(1)(·;P (1)

1 , . . . ,P
(1)
b ,m), (73)

where the P
(1)
i are i.i.d. from a distribution P(1). In some cases the 1RSB description coin-

cides with the RS one, for instance whenever the P
(1)
i in the support of P(1) are concentrated

on a single value of the field (in the following we shall call this a trivial 1RSB solution).
A less obvious reduction happens when the parameter m is equal to 1: from (70, 72) one
realizes that in this case μ(1) is indistinguishable from μ(0) with properly averaged values of
the external fields, more precisely

μ(1)(σL;P (1)

1 , . . . ,P
(1)
b ,m = 1) = μ(0)(σL;η1, . . . , ηb) with ηi =

∫
dP

(1)
i (η)η. (74)

This 1RSB formalism can be promoted to an arbitrary level of symmetry breaking by
a recursive construction. Let us call M0 the set of probability laws on X , and define by
recurrence MK+1 as the set of probability laws on MK . The measure μ(K) with K steps
of replica symmetry breaking is parameterized by K reals 0 ≤ m1 ≤ · · · ≤ mK ≤ 1 and b

elements P
(K)
i of MK , and can be expressed recursively as

μ(K+1)
(
σL;{P (K+1)

i

}b

i=1
,m1, . . . ,mK+1

)

= 1

ZK+1[{P (K+1)
i };m1, . . . ,mK+1]

∫ b∏

i=1

dP
(K+1)
i

(
P

(K)
i

)

× μ(K)
(
σL;{P (K)

i

}
,m2, . . . ,mK+1

)
ZK

({
P

(K)
i

}
,m2, . . . ,mK+1

)m1/m2 . (75)

The K-RSB assumption of the cavity method reads

μL(·) d→ μ(K)(·;P (K)

1 , . . . ,P
(K)
b ,m1, . . . ,mK), (76)

with the P
(K)
i i.i.d. from P(K), a given element of MK+1. Eventually the limit of an infinite

number of steps of replica symmetry breaking (K → ∞) can be formally taken. Note that,

6We skip the intermediate case of a finite number of pure states; for instance the low temperature phase

of an Ising ferromagnet should be described by the superposition of the two μ(0) of positive and negative
magnetization.
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as discussed in the 1RSB case, μ(K) incorporates as special cases (when the distributions
concentrates on a single value, or when the mi ’s are degenerate) all possible descriptions at
a smaller level of RSB.

We face now the problem of choosing, among all these possible assumptions, which is
the correct one. A first condition on the allowed values of P(K) arises from a simple con-
sistency requirement. μL can indeed be obtained in two ways: from a direct application of
the statement (76), or by considering a larger neighborhood of depth L′ > L and making
a partial marginalization of μL′ . As FL′ \ FL is distributed according to a Galton–Watson
branching process, the consistency of these various ways of obtaining μL induces condi-
tions restricting the possible values of P(K). At the RS (K = 0) level this is nothing but the
stationarity property stated in (21). The heuristic for the choice of K and the values of the
breaking parameters mi arises from the global aspect of the cavity method, namely the com-
putation of the typical value of the free-entropy density �. More precisely, for each level of
the RSB hierarchy there is a functional �(K)[P(K),m1, . . . ,mK ] whose minimum is taken
as an estimation of �. The bounds � ≤ �(K) have indeed been rigorously proven in some
cases [38–40], and are expected to hold with a certain generality. The best estimation of �,
which is presumably exact in mean-field models (this has been proven in one case [41]),
should thus be sought through the minimization of �(K) in the formal K → ∞ limit which
encompasses all possible levels of RSB. The limit of μL is expected to be described by the
set of parameters achieving this minimum (note that the extremization of �(K) with respect
to P(K) corresponds to the consistency requirement explained above). This minimization is
obviously a formidable task which seems out of reach in its full generality for models on
sparse random graphs. There are however partial arguments which can be used to assess the
validity of the simplest RS and 1RSB hypothesis. The decay of point-to-set correlations at
large distance (in other words the purity of the Gibbs measure, or the non reconstructibility
of the value of a spin from the observation of distant sites) is indeed related to the absence
of a non-trivial solution of the 1RSB consistency equations at m = 1 [35], and suggests the
RS hypothesis to be correct. A test of the plausibility of the 1RSB description is usually per-
formed via a local stability analysis [42]: one checks in this way the absence of a non-trivial
solution of the 2RSB consistency equations in the vicinity of a 1RSB solution P(1).

Let us finally underline the deep connection between these issues and the local weak
convergence method developed by Aldous (see [43, 44] for reviews) on related optimization
problems. Recently the above stated local properties of the RS cavity method were rigor-
ously proven in some discrete models (cf. for instance [45–47]), under a priori non-optimal
conditions (worst-case vs typical decay of correlations, i.e. uniqueness vs extremality con-
ditions [21]).

6.2 Minimal Size Rearrangements in the Random Graph Ensembles

We shall now reconsider the computations of the m.s.r.d. performed in the random tree
ensembles in the light of the above presented cavity method. It should be clear that the
thermodynamic limit (N → ∞) of the average distribution qn defined in (4) for the original
random graph ensembles coincide with the infinite L limit of their tree counterpart whenever
the RS assumption stated in (71) is valid. The probability measure on the initial configuration
we used for the computation of the m.s.r. in finite tree formulae (cf. (11)) corresponds indeed
to the limit measure μ(0) on the finite neighborhood of the random graphs. The validity
of this RS scenario depends on the particular model and on the value of the connectivity
parameter α (c for coloring).

In the case of XORSAT [5, 6] the local properties of the uniform measure over the set
of solutions are well described by the RS assumption up to the satisfiability threshold αs,
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for all values of k. In consequence the computation of qn performed in the random tree
ensemble extends to random graphs throughout the satisfiable phase α ≤ αs, the threshold
for the freezing transition in random graphs (αf) and in random trees (αp) are equal, and the
exponents governing the divergence of the m.s.r. in the limit α → α−

f are correctly obtained
from (64). In fact αp corresponds also to the clustering transition αd due to the appearance
of an extensive 2-core: a rearrangement for a variable in the 2-core (more precisely in the
backbone [5, 6]) is necessarily of extensive size. In agreement with this correspondence, the
order parameter of the freezing transition solution of (57) is precisely the fraction of vertices
in the backbone.

The picture of the satisfiable phase of random k-SAT and q-COL advocated in [21–23]
is richer. Let us first describe it on the example of SAT. At low values of the connectivities,
α < αd(k), one expects a plain RS description to hold. The clustering transition αd(k) cor-
responds to the appearance of long-range point-to-set correlations, in other words to a non-
trivial solution of the 1RSB equations with m = 1. In an intermediate regime [αd(k),αc(k)]
the thermodynamics of the system is described by a 1RSB scenario with m = 1, the domi-
nant clusters of solutions are exponentially numerous (their complexity is strictly positive).7

At αc(k) a condensation phenomenon occurs, the degeneracy of the thermodynamically rele-
vant clusters becomes sub-exponential, and the 1RSB breaking parameter m decreases from
1 to 0 as α increases from αc(k) to the satisfiability threshold αs(k). Higher levels of RSB
might be necessary to describe the condensated regime [αc(k),αs(k)]; we shall in the follow-
ing make the hypothesis (partly supported by [48]) that this is not the case for α ≤ αc(k).
Because of the equivalence, for the local properties of the measure, of an RS description
and a 1RSB with m = 1 (cf. (74)), we thus expect the computation of the minimal size re-
arrangements performed on the tree to be correct for random SAT formulae with α ≤ αc(k).
For the sake of readability we reproduce in Table 2 the values of αd(k) and αc(k) obtained
in [21, 23], along with the satisfiability threshold αs(k) of [24].

Depending on the values of k the freezing threshold αp(k) for the random tree ensemble
is, or not, smaller than the condensation one. For k ∈ [3,5] one finds αp(k) > αc(k): for these
values of k the computation in the tree ensemble does not allow the determination of the
freezing threshold of the original ensembles αf(k) (at this point we can just say that αf(k) >

αc(k)). For k = 6 the situation is reversed, αp(6) < αc(6), we thus conclude that αf(6) =
αp(6), and that the exponents a, b, ν describing the precursors of the freezing transition can
be safely computed from (66). We expect the ordering of the various thresholds, and hence
the validity of the conclusions just stated for k = 6, to remain the same for all greater values
of k. This is corroborated by an analysis of the large k limit presented in Appendix 1: the
asymptotic behavior of αp(k) is much smaller than the one of αc(k) [21, 23],

αf(k) = αp(k) = 2k

k
(lnk + O(ln lnk)) � αc(k) = 2k ln 2 − O(1). (77)

In fact the SAT problem in the limit of large k becomes similar to the XORSAT problem:
the threshold αf(k) = αp(k) is equivalent to 2k times the corresponding value for XORSAT,
the order parameter at the transitions are equivalent in both problems, hence the parameter
λ governing the critical exponents becomes the same in the large k limit. Moreover from the
results of [21, 23] on the behavior of the clustering threshold one realizes that the regime

7The case k = 3 is special from this point of view, one finds indeed αd(3) = αc(3) and no intermediate phase
with an exponential number of relevant clusters.
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Table 2 Thresholds for the original random ensembles, from left to right clustering, freezing, freezing of
the tree ensemble, condensation and satisfiability. The COL values are from [22, 25] for the satisfiability
threshold cs, the SAT ones from [21, 23, 24] for αs. For q ∈ [3,8] the freezing threshold of [22] is computed
at the 1RSB level

k, q COL SAT

cd cf cp cc cs αd αf αp αc αs

3 4 4.6 4.911 4 4.68 3.86 4.40 3.86 4.267

4 8.35 8.8 9.267 8.4 8.90 9.38 10.55 9.547 9.931

5 12.83 13.5 14.036 13.2 13.67 19.16 21.22 20.80 21.117

6 17.64 18.6 19.112 18.4 18.88 36.53 39.87 43.08 43.37

7 22.70 24.1 24.435 24.0 24.45

8 27.95 29.93 29.960 29.90 30.33

9 33.45 35.658 36.0 36.49

10 39.0 41.508 42.5 42.9

[αd(k),αf(k)] where clusters are present yet do not have frozen variables is of vanishing
width in this limit.

The picture of the satisfiable regime for the q-coloring of random graphs presented
in [22] is essentially the same as the one of SAT we just described. The dynamical, con-
densation and satisfiability thresholds obtained in [22] are recalled in Table 2 (the last two
are denoted cg(q) and cq(q) in [22]). As argued above the computation performed in the
random tree ensemble should be correct for Poissonian random graphs of mean connectivity
c ≤ cc(q); for q ∈ [3,8] this regime does not include the tree freezing transition cp(q) (called
cr(m = 1) in [22]). Conversely for q ≥ 9 we have cf(q) = cp(q), which is given exactly by
q(q − 1) times the threshold of XORSAT (recall the formal equivalence between XORSAT
and the free boundary COL problem stated in (39)), and the exponents a, b, ν are the same
as in XORSAT (identifying q and k). This ordering of the thresholds is confirmed by the
analysis at large q ,

cf(q) = q(lnq + O(ln lnq)) � cc(q) = 2q lnq − O(lnq), (78)

the behavior of cf(q) being justified in Appendix 1 while the one of the condensation thresh-
old was given in [22].

6.3 Dealing with RSB

We have thus reached the frustrating conclusion that the computations performed up to now
were not able to determine the average m.s.r.d. in the condensated phase of SAT and COL,
and in particular for k ∈ [3,5], q ∈ [3,8], to locate the freezing transition and describe its
critical behavior. The presentation of the cavity method of Sect. 6.1 indicates clearly what
has to be done to remedy this insufficiency: one should reproduce the computations of the
m.s.r.d. on finite trees, taking for the probability law on the initial configurations μ(K) instead
of the μ(0) we initially considered. This generalized computation can in fact be performed
in a similar way, at the price of some technical complications, and is sketched for the K = 1
level of replica symmetry breaking in Appendix 2. The resulting equations become rather
difficult to solve and we leave the complete determination of the distribution qn as an open
problem. One can however draw some general observations that we want to underline here.
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The order parameter of the freezing transition, i.e. the fraction of rearrangements of diverg-
ing size, corresponds to the probability (over the pure states distribution) of a variable being
acted on by an hard field which constrains it to a single value. This was found above in
the three CSP we considered when the freezing transition happens in a 1RSB phase with
m = 1, and will be shown in Appendix 2 to hold in non trivial situations with m < 1. This
should remain true for any CSP and any further level of RSB. Another universality state-
ment concerns the critical behavior of the distribution qn around the freezing transition αf.
The phenomenology described by the exponents a, b, ν can indeed be argued to persist even
when αf belongs to the condensated regime [αc, αs]. Moreover the parameter λ fixing the
value of the exponents can be expressed from the standard RSB computation. The reader
will find in Appendix 2 the technical details leading to this conclusion for SAT and COL at
the 1RSB level, which is also expected to hold for other CSPs and higher levels of RSB.

7 Conclusions and Perspectives

One of the main themes of the paper was the distinction that has to be made between the
clustering and freezing transitions. These can coincide in sufficiently symmetric problems
like XORSAT, yet in general the solution space gets clustered without variables taking the
same value in all elements of the clusters. A definition of the clustering threshold αd was put
forward in [21] as the smallest connectivity such that the long-range point-to-set correlation

lim
L→∞

lim
N→∞

E

∑

σ∂L

μ(σ ∂L)
∑

σi

|μ(σi |σ ∂L) − μ(σi)| (79)

remains positive, where i is an arbitrary variable node and σ ∂L the configuration of the nodes
at graph distance exactly L from i. A similar definition of the freezing transition αf can be
given in terms of the stronger notion of correlation

lim
L→∞

lim
N→∞

E

∑

σ∂L

μ(σ ∂L)
∑

σi

I(μ(σi |σ ∂L) = 1), (80)

hence αf ≥ αd. The sub-optimality of the naive reconstruction algorithm given in Sect. 5
should clarify why this inequality is in general strict.

In this paper we concentrated on the rearrangements of finite sizes in the thermodynamic
limit, i.e. we computed the limit N → ∞ (or L → ∞ in tree ensembles) of the distributions
qn at a fixed value of the sizes n. The percolating rearrangements thus appeared as formally
infinite values of n which had to be included to ensure the normalization of the limiting qn.
It should be an interesting research problem to describe more precisely these diverging size
rearrangements by taking a scaling limit of qn, letting n grows with N . The leading order is
expected to be linear in N , as are the minimal Hamming distances between clusters studied
for instance in [49]. This investigation might in particular clarify the equality found, in the
three particular cases and up to the first level of replica symmetry breaking, between the
order parameter of the freezing transition and the fraction of hard fields in the usual cavity
computations.

The divergence of the minimal size of rearrangements can be viewed as a percolation
phenomenon of their supports. In the case of XORSAT this is nothing but the classical
2-core percolation of random hypergraphs; for general CSP, in particular SAT and COL, the
percolating structure is defined in two steps, the factor graph being equipped with a measure
on the set of initial configurations. The universality of their critical behavior described by the
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exponents a, b, ν and the relations (63) between them is shared by other similar problems,
for instance rigidity [50] and q-core [51] percolation when defined on Bethe lattices. The
latter problem is strongly related to kinetically constrained models [52], for which minimal
size rearrangements can be also computed and have the same critical behavior [53].

The recursion relations (7) could form the basis of new investigations on the structure of
a single formula, following the line of research pioneered in [15, 16]. Though there is no
guarantee of convergence in the presence of cycles in the factor graph, they can be turned
into an heuristic message passing algorithm that will provide informations on a solution of
a given instance of CSP. This solution should be found by an independent solver algorithm,
or, as was proposed in [54], in an incremental way. Starting from an empty formula and an
arbitrary assignment of the variables constraints are introduced one by one. Whenever the
new constraint is violated by the current assignment one rearranges it; in [54] this step was
performed by a local search algorithm, that could be replaced by the single sample m.s.r.
message passing heuristic.

The study of the rearrangements of XORSAT performed in [27] addressed further issues
left apart in the present work. One was the characterization of the geometrical properties of
the m.s.r., through the distribution of their average depths and a measure of their coopera-
tivity by a geometrical susceptibility. We expect some of these geometrical results to extend
from XORSAT to arbitrary CSPs, in particular the value of the critical exponents ζ = 1/2,
η = 1 (see [27] for their definitions). Another aspect should on the contrary be much more
problem dependent, namely the structure of the energy barriers between rearranged config-
urations. Given a pair of satisfying assignments σ, τ one can define the set of paths in the
configuration space which leads from one to the other by modifying one variable at a time,
each variable being modified at most once. The barrier between σ and τ can be defined as
the minimum over this set of paths of the maximum along the path of the number of vio-
lated constraints. One can then study the rearrangements which modify a given variable i

and achieves a minimal value of the barrier between the initial and final configurations. The
structure of XORSAT is such that minimal barrier and minimal size rearrangements do not
coincide, and that energy barriers are always strictly positive (unless the variable appears in
no constraint, otherwise flipping a variable always makes at least one constraint unsatisfied).
On the contrary for SAT a finite size rearrangement can always be performed remaining in
the set of satisfying configurations: one just has to flip the variables in decreasing order with
respect to the distance from the root of the rearrangement.

Let us finally mention that the general formalism can be applied to several CSPs besides
the three examples on which we concentrated. For instance the bicoloring of random hy-
pergraphs [55], which admits a stationary free boundary, is easily seen to have a freezing
transition in random tree ensembles with branching ratio

α(BICOL)
p (k) = (2k−1 − 1)α(XORSAT)

p (k). (81)
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Appendix 1: Critical Behavior around the Freezing Transition

XORSAT

In this appendix we shall give some details on the asymptotic behavior of the average m.s.r.d.
in the neighborhood of the freezing transition in the random tree ensembles. The case of
XORSAT was treated in [27], the main interest will thus be in the extension of these results
to the SAT problem. For the sake of clarity we first recall briefly some of the key points of
Appendix C in [27].

Let us define the generating functions of qn and q̂n as

R(x) =
∞∑

n=1

qnx
n, R̂(x) =

∞∑

n=1

q̂nx
n. (82)

Equations (28, 27) can be rewritten as

Q̂n = Qk−1
n , (83)

R(x) = x exp[−αk + αkR̂(x)]. (84)

The order parameter φ = limn→∞ Qn can also be expressed as R(x = 1); the equation de-
termining φ is formally written as φ = V (φ,α) with V (φ,α) = 1 − exp[−αkφk−1]. At the
transition point (αp, φp) we have ∂φV = 1: the two curves become tangent at this point.
More explicitly,

φp = 1 − exp[−αpkφk−1
p ], (85)

1 = αpk(k − 1)φk−2
p exp[−αpkφk−1

p ]. (86)

Consider first the large n regime right at the transition (α = αp), and assume that the
decay of Qn towards the plateau φp is algebraic, Qn ∼ φp +An−a , with A a positive constant
and a a positive exponent. Expanding (83) with this ansatz, we obtain

Q̂n ∼ φk−1
p + (k − 1)φk−2

p An−a + (k − 1)(k − 2)

2
φk−3

p A2n−2a. (87)

The properties of generating functions (similar to Laplace transforms) lead to algebraic sin-
gularities of R and R̂ around x = 1 [56]:

R(1 − s) ∼ 1 − φp − A(1 − a)sa, (88)

R̂(1 − s) ∼ 1 − φk−1
p − (k − 1)φk−2

p A(1 − a)sa

− (k − 1)(k − 2)

2
φk−3

p A2(1 − 2a)s2a (89)

where the equivalent notation hold in the s → 0 limit, and  is Euler’s special function.
Inserting these expressions in (84), one can expand in powers of s and identify the terms of
order s0, sa and s2a on both sides of the equation. The first two orders compensate because
of, respectively, the relation on the order parameter (85) and its derivative (86). The order
s2a fixes the exponent a under the form (63), with λ given by (64).

We now consider the limit α → αp and denote δ = αp − α the (vanishing) distance to the
transition. There are two scaling regimes to be distinguished; the first governs the behavior
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of Qn in the neighborhood of the plateau. Suppose this regime is reached on a scale ni(δ)

diverging with δ and described by the following scaling function:

ε(t) = lim
δ→0

δ−1/2[Qn=tni(δ) − φp]. (90)

Expanding (83, 84) order by order in δ, one finds similarly (see [27] for details) that the
two first orders are satisfied thanks to relations (85, 86), while the third leads to an integro-
differential equation for the scaling function ε(t). The important feature of ε(t) is its behav-
ior in the small and large t limits (entrance and exit from the plateau):

ε(t)
t→0∼ t−a, ε(t)

t→∞∼ tb, (91)

where a is the same exponent as before, and b the dual one (cf. (63)). In fact the small t

behavior of ε allows to fix the still undetermined scale ni(δ): for a large, yet independent of
δ, value of n, the study right at αp lead to Qn − φp ∼ n−a . For consistency we must have
n−a ∼ δ1/2(n/ni(δ))

−a , which implies ni(δ) ∼ δ−1/2a .
The second scaling regime describes the decay of Qn from its plateau value down to

zero, i.e. the distribution of the almost-frozen rearrangements whose size is diverging as α

reaches αp. Suppose again the existence of another scale nf(δ) for this to happen, and of the
scaling function

Q(t) = lim
δ→0

Qn=tnf(δ). (92)

Plugging this ansatz in (83, 84) one obtains another equation for Q(t), which implies in
particular Q(t) − φp ∼ tb at small t . Matching the small t behavior of Q(t) with the large
t limit of the previous scaling function ε(t), one finds that nf(δ) ∼ δ−ν , with ν = (1/2a) +
(1/2b), as announced in the main part of the text.

SAT

The same steps, with some technical adaptations, can be followed in the case of SAT. Let
us first define the integrated distributions and the generating functions for each value of the
conditioning field:

Qn(h) =
∑

n′≥n

qn′(h), Q̂n(u) =
∑

n′≥n

q̂n′(u),

R(h, x) =
∑

n

qn(h)xn, R̂(u, x) =
∑

n

q̂n(u)xn.
(93)

We rewrite (53, 54, 55) as

Q̂n(u)P̂(u) =
∫ k−1∏

i=1

dP(hi)δ(u − f (h1, . . . , hk−1))

k−1∏

i=1

1 − tanhhi

2
Qn(hi) for n ≥ 1, (94)

R(h,x)P(h) = x

∞∑

l+,l−=0

pl+,l−

∫ l+∏

i=1

dP̂(u+
i )

l−∏

i=1

dP̂(u−
i )δ

(
h −

l+∑

i=1

u+
i +

l−∑

i=1

u−
i

)

×
l−∏

i=1

R̂(u−
i , x), (95)

Qn =
∫

dP(h)(1 − tanhh)Qn(h). (96)
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Recall that the functional order parameters φ(h) = limQn(h) = 1 − R(h,x = 1) and φ̂(u)

are solutions of (59, 60); we denote φp(h) and φ̂p(u) their values at the threshold αp for the
appearance of a non-trivial solution, and φp = limQn = ∫

dP(h)(1 − tanhh)φp(h).
For our purposes it will be sufficient to work with the simplified versions of (94, 95)

obtained by integration over the fields:

∫
dP̂(u)Q̂n(u) =

(∫
dP(h)

1 − tanhh

2
Qn(h)

)k−1

= 1

2k−1
Qk−1

n , (97)

∫
dP(h)R(h, x) = x exp

[
−αk

2
+ αk

2

∫
dP̂(u)R̂(u, x)

]
. (98)

Consider now the behavior of these quantities right at the transition αp. The simplest
hypothesis is to assume the existence of a single exponent a describing the decay of the
integrated distributions Qn(h), Q̂n(u), towards their limit (as n → ∞) φ(h), φ̂(u), indepen-
dently of h,u. This hypothesis is customary in the formally analog mode coupling theory
of liquids [32], where the role of the conditioning field is held by a wave vector. We thus
make the ansatz Qn(h) ∼ φ(h) + A(h)n−a with A(h) a positive function. Expanding (97),
this leads to

∫
dP̂(u)Q̂n(u) ∼

(
φp

2

)k−1

+ k − 1

2k−1
φk−2

p

(∫
dP(h)(1 − tanhh)A(h)

)
n−a (99)

+ (k − 1)(k − 2)

2k
φk−3

p

(∫
dP(h)(1 − tanhh)A(h)

)2

n−2a. (100)

These algebraic decays at large n translate into singularities in the generating function
around x = 1,

∫
dP(h)R(h,1 − s) ∼ 1 −

∫
dP(h)φp(h) −

(∫
dP(h)A(h)

)
(1 − a)sa, (101)

∫
dP̂(u)R̂(u,1 − s)

∼ 1 −
(

φp

2

)k−1

− k − 1

2k−1
φk−2

p

(∫
dP(h)(1 − tanhh)A(h)

)
(1 − a)sa (102)

− (k − 1)(k − 2)

2k
φk−3

p

(∫
dP(h)(1 − tanhh)A(h)

)2

(1 − 2a)s2a. (103)

Finally these expansions are inserted in (98); collecting the terms of order s0, sa , s2a yields
the following three equations:

∫
dP(h)φp(h) = 1 − exp

[
−αpk

2k
φk−1

p

]
, (104)

∫
dP(h)A(h) = αpk(k − 1)

2k
φk−2

p exp

[
−αpk

2k
φk−1

p

](∫
dP(h)(1 − tanhh)A(h)

)
, (105)

(1 − a)2

(1 − 2a)
= λ = 2k(k − 2)

αpk(k − 1)φk−1
p

. (106)
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Fig. 5 The scaling functions of the average m.s.r.d. for the random tree ensemble of 3-SAT. The almost
superimposed curves correspond to α = 4.39, 4.392, 4.396. Left: intermediate scale t = n(αp − α)1/2a , see
(90). Right: final scale t = n(αp − α)ν , cf. (92), the dashed horizontal line indicates the order parameter φp.
Numerical values of the exponents can be found in Table 1

The first is a direct consequence of (59, 60) on the order parameter, and can also be
derived from (97, 98), setting x = 1 in the latter.

The second is a functional analog of (86) and deserves a short explanation. The order
parameter φ(h) is defined as the solution of a fixed-point functional equation of the type
φα = V [φα,α], where we keep implicit the functional character of φ but emphasize the
dependence on the control parameter α. The relevant non-trivial solution of this equation
which exists for α ≥ αp disappears at αp: this is a bifurcation point in the vocabulary of
discrete dynamical systems. A powerful tool in this context is the implicit function theorem:
if for some value α0 there is a solution φα0 and if the differential of V with respect to φ

in (φα0 , α0) has no eigenvector of eigenvalue 1, then the solution φα can be continuously
followed in a neighborhood of α0. At the bifurcation point αp the hypothesis of the theo-
rem must be violated. Linearizing (59, 60), the reader will easily verify that an eigenvector
of eigenvalue 1 of the differential satisfies (105). We can thus assume A(h) to be in this
eigenspace for the second condition to be verified.8 Note that for a real order parameter
equation φ = V (φ,α), this condition is nothing but the equality of the derivatives 1 = ∂φV

at a transition, as used for instance in (86).
The third equation fixes the exponent a and gives the value of the exponent λ, as was

claimed in the main part of the text (cf. (63) and (66)).
The study of the intermediate and final scaling regimes can be done following the lines

sketched above on the XORSAT example; for instance the behavior around the plateau is
described, for all values of the cavity fields, by a single scaling function, generalizing (90)
to

Qn=tni(δ)(h) ∼ φp(h) + δ1/2A(h)ε(t). (107)

Provided A(h) is chosen in such a way that (105) is verified, ε(t) obeys the same kind
of integro-differential equation as the scaling function of the XORSAT problem, and in
particular its behavior at small and large t is identical (see (91)). We thus reach exactly the
same conclusions on the behavior of ni(δ) and nf(δ). This is confirmed in Fig. 5, which
shows, in the two regimes, a good collapse of numerically determined distributions Qn for
three values of α approaching αp.

8This explanation is of course heuristic; the functional character of the fixed point equation makes the invo-
cation of the implicit function theorem rather fuzzy.
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Asymptotics at Large k, q

We justify now the statements made in the main part of the text on the large k, q behavior of
the freezing thresholds. This analysis is simple in the case of XORSAT: from (85, 86) one
obtains a closed equation on the order parameter at the transition,

1

k − 1
= − (1 − φp(k)) ln(1 − φp(k))

φp(k)
, (108)

which can be inverted to obtain an asymptotic expansion of φp(k). Reinserting it in (86)
yields

αp(k) = 1

k

(
lnk + ln lnk + 1 + O

(
ln lnk

lnk

))
. (109)

The formal correspondence with the COL problem (see (58)) leads immediately to the left-
hand side of (78).

The distributions of fields P(h), P̂ (u) for random SAT formulas can be shown from
(52) to concentrate in the large k limit around, respectively, 0 and 2−k . Equations (53, 54)
on qn(h), q̂n(u) can thus be simplified at the leading order in k by retaining only these
deterministic values of the conditioning fields. A simple transformation then shows that
the distribution qn(h = 0) collapses onto the solution of the XORSAT equations (31, 32),
provided the connectivity α is divided by a factor of 2k . This leads to the asymptotic behavior
of the freezing threshold stated in (77), and to the equivalence at large k of the exponents
a, b, ν in the SAT and XORSAT problems. A systematic expansion in powers of 2−k of the
deviations between the two models could be set up from this starting point.

Appendix 2: Minimal Size Rearrangements at the 1RSB Level

General Case

We consider in this appendix the computation proposed in Sect. 6.3, namely the determina-
tion of the m.s.r.d. for a finite tree factor graph whose initial configuration is drawn according
to the law μ(1) (see (72)). To characterize it we introduce on each directed edge of the factor
graph a distribution of cavity fields, denoted Pi→a(η) and P̂a→i (ν). They obey the following
set of equations,

P̂a→i (ν) = 1

Z({Pj→a})
∫ ∏

j∈∂a\i
dPj→a(ηj→a)δ(ν − f ({ηj→a}))z({ηj→a})m, (110)

Pi→a(η) = 1

Z({P̂b→i})
∫ ∏

b∈∂i\a
dP̂b→i (νb→i )δ(η − g({νb→i}))z({νb→i})m, (111)

where the functions f , g and z are the ones defined in (12, 13) for the corresponding edges.
The boundary condition is given by Pi→a(η) = Pext,i (η) if i ∈ B , otherwise Pi→a(η) =
δ(η − η). The marginals of μ(1) can be obtained from these distributions, for instance for a
single variable one obtains
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μ(1)(σi) =
∫

dPi(η)η(σi),

Pi(η) = 1

Z({P̂a→i})
∫ ∏

a∈∂i

dP̂a→i (νa→i )δ(η − g({νa→i}))z({νa→i})m.

(112)

We also have to introduce distributions of the size messages, q
(i→a,σi )

�n (η) and q̂
(a→i,σi )

�n (ν),
which corresponds to the weighted averages of the distributions in a single μ(0). From
(18, 19) one obtains

P̂a→i (ν)q̂
(a→i,σi )

�n (ν) = 1

Z({Pj→a})
∫ ∏

j∈∂a\i
dPj→a(ηj→a)δ(ν − f ({ηj→a}))z({ηj→a})m

×
∑

σa\i
μ(σ a\i |σi, {ηj→a})

∏

j∈∂a\i

∑

�nj→a

q
(j→a,σj )

�nj→a
(ηj→a)δ�n,f̃ ({�nj→a })

(113)

and

Pi→a(η)q
(i→a,σi )

�n (η) = 1

Z({P̂b→i})
∫ ∏

b∈∂i\a
dP̂b→i (νb→i )δ(η − g({νb→i}))z({νb→i})m

×
∏

b∈∂i\a

∑

�nb→i

q̂
(b→i,σi )

�nb→i
(νb→i )δ�n,̃gσi

({�nb→i }), (114)

with the boundary condition at the leaves q
(i→a,σ )

�n (η) = δ�n,�o(σ ). Finally the m.s.r.d. with
respect to μ(1) for a variable i reads

q(i)
n =

∫
dPi(η)

∑

σi

η(σi)
∑

�n
q

(i,σi )

�n (η)δn, min
τi �=σi

[�n]τi , (115)

with

Pi(η)q
(i,σi )

�n (η) = 1

Z({P̂a→i})
∫ ∏

a∈∂i

dP̂a→i (νa→i )δ(η − g({νa→i}))z({νa→i})m

×
∏

a∈∂i

∑

�na→i

q̂
(a→i,σi )

�na→i
(νa→i )δ�n,̃gσi

({�na→i }). (116)

Note that this computation reduces to the one of Sect. 3.1.2 either when the distribution of
cavity fields are concentrated on a single value or when m = 1, defining in the latter case

ηi→a =
∫

dPi→a(η)η, q
(i→a,σi )

�n =
∫

dPi→a(η)η(σi)q
(i→a,σi )

�n (η)

ηi→a(σi)
, (117)

and similarly νa→i and q̂
(a→i,σi )

�n . For a generic value of m one proceeds with the computation
of the average m.s.r.d. for a random tree; the only modification with respects to Sect. 3.1.3 is
a replacement of the distribution of external fields P(η) by a distribution of distribution of
fields, P(P ). One has thus to define q

(σ,L)

η,�n (P ), the average of the joint law Pi(η)q
(i,σi )

�n (η) on

η and �n for the root of TL, conditioned on the event P = Pi , and similarly q̂
(σ,L)

ν,�n (P̂ ) for T̂L.
These quantities can be obtained by recursions on L through equations formally similar to
(22, 23), which could in principle be solved numerically using a population of population
of elements (η, �n(1), . . . , �n(q)). We shall give the explicit form of these equations in the two
particular cases of SAT and COL in the following two subsections.
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SAT

For random SAT instances the stationarity conditions for the distribution of distribution of
fields P(P ), P̂(P̂ ) can be written in their distributional form as

P̂
d= F(P1, . . . ,Pk−1), P

d= G(P̂ +
1 , . . . , P̂ +

l+ , P̂ −
1 , . . . , P̂ −

l−). (118)

The functionals F and G are defined by

P̂ (u) = 1

Z({Pi})
∫ k−1∏

i=1

dPi(hi)δ(u − f (h1, . . . , hk−1))z(h1, . . . , hk−1)
m, (119)

P (h) = 1

Z({P̂ ±
i })

∫ l+∏

i=1

dP̂ +
i (u+

i )

l−∏

i=1

dP̂ −
i (u−

i )δ

(
h −

l+∑

i=1

u+
i +

l−∑

i=1

u−
i

)

× z(u+
1 , . . . , u+

l+ , u−
1 , . . . , u−

l−)m, (120)

where

z(h1, . . . , hk−1) = 2 −
k−1∏

i=1

1 − tanhhi

2
, (121)

z(u+
1 , . . . , u+

l+ , u−
1 , . . . , u−

l−) =
l+∏

i=1

1 + tanhu+
i

2

l−∏

i=1

1 − tanhu−
i

2

+
l+∏

i=1

1 − tanhu+
i

2

l−∏

i=1

1 + tanhu−
i

2
. (122)

The conditional average of the joint law of cavity field and sizes obey the two following
equations:

q̂(L)
u,n (P̂ )P̂(P̂ ) =

∫ k−1∏

i=1

dP(Pi)δ(P − F({Pi})) 1

Z({Pi})

×
∫ k−1∏

i=1

dhiδ(u − f (h1, . . . , hk−1))z(h1, . . . , hk−1)
m

∑

n1,...,nk−1

k−1∏

i=1

q
(L)
hi ,ni

(Pi)

×
[(

1 −
k−1∏

i=1

1 − tanhhi

2

)
δn,0 +

(
k−1∏

i=1

1 − tanhhi

2

)
δn,min[n1,...,nk−1]

]
,

(123)

q
(L+1)
h,n (P )P(P ) =

∑

l+,l−
pl+,l−

∫ l+∏

i=1

dP̂(P̂ +
i )

l−∏

i=1

dP̂(P̂ −
i )δ(P − G({P̂ ±

i })) 1

Z({P̂ ±
i })

×
∫ l+∏

i=1

du+
i

l−∏

i=1

du−
i δ

(
h −

l+∑

i=1

u+
i +

l−∑

i=1

u−
i

)
z({u±

i })m

l+∏

i=1

P̂ +
i (u+

i )

×
∑

n1,...,nl−

l−∏

i=1

q̂
(L)

u−
i

,ni
(P̂ −

i )δn,1+n1+···+nl− . (124)
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These equations conserve the conditions
∑

n q
(L)
h,n (P ) = P (h) which follow from the defini-

tion of q
(L)
h,n (P ). Finally the average m.s.r.d. for the root of TL reads

q(L)
n =

∫
dP(P )

∫
dh(1 − tanhh)q

(L)
h,n (P ). (125)

As a consistency check one can reduce these equations to the ones developed in the main
part of the text (cf. (53–55)) when m = 1, using the identity (117).

Let us come back on the 1RSB equations (118–120). It is possible for the distributions
P̂ (u) in the support of P̂ to acquire a peak on the hard field value u = +∞, of intensity
denoted φ̂(P̂ ). This corresponds to a field forcing the variable node to satisfy the constraint
node emitting the message. Similarly we call φ(P ) the intensity of the peak in h = −∞,
signaling a clause that the emitting variable is forced to unsatisfy it. These intensities are
found from (118–120) to obey

φ̂(P̂ )P̂(P̂ ) =
∫ k−1∏

i=1

dP(Pi)δ(P − F({Pi})) 1

Z({Pi})
k−1∏

i=1

φ(Pi), (126)

φ(P )P(P ) =
∑

l+,l−
pl+,l−

∫ l+∏

i=1

dP̂(P̂ +
i )

l−∏

i=1

dP̂(P̂ −
i )δ(P − G({P̂ ±

i })) 1

Z({P̂ ±
i })

×
l+∏

i=1

∫
dP̂ +

i (u)

(
1 − tanhu

2

)m l−∏

i=1

∫
dP̂ −

i (u)

(
1 + tanhu

2

)m

×
[

1 −
l−∏

i=1

(
1 − φ̂(P̂ −

i )
∫

dP̂ −
i (u)

(
1+tanhu

2

)m

)]
. (127)

A randomly chosen variable will receive a forcing hard field in a randomly chosen pure state
with probability

φ = 2
∫

dP(P )φ(P ), (128)

where the factor 2 comes from the symmetry between positive and negative literals; φ is
also the order parameter of the freezing transition. Equations (123, 124), in the L → ∞
limit, admit a solution where φ(P ) (resp. φ̂(P̂ )) is the intensity of a Dirac peak on (h,n) =
(−∞,∞) (resp. (u,n) = (+∞,∞)). The fraction of diverging rearrangements in (125) is
then seen to be equal to φ.

In order to discuss the critical behavior of the m.s.r.d. it is convenient to derive an inte-
grated version of (123, 124),

∫
dP̂(P̂ )

∫
duQ̂u,n(P̂ )(1 + tanhu)m

∫
dP̂ (u)(1 + tanhu)m

=
(∫

dP(P )

∫
dh

1 − tanhh

2
Qh,n(P )

)k−1

= 1

2k−1
Qk−1

n , (129)
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∫
dP(P )

∫
dhRh,x(P )(1 − tanhh)m

∫
dP (h)(1 − tanhh)m

= x exp

[
−αk

2
+ αk

2

∫
dP̂(P̂ )

∫
duR̂u,x(P̂ )(1 + tanhu)m

∫
dP̂ (u)(1 + tanhu)m

]
, (130)

where the former is valid for n ≥ 1 and following our conventions we defined

Qh,n(P ) =
∑

n′≥n

qh,n′(P ), Rh,x(P ) =
∑

n

xnqh,n(P ). (131)

Let us call α(1)
p the threshold value for the appearance of a non-trivial solution to (126, 127),

and φ(1)
p the corresponding order parameter. We want to determine the critical behavior of

qn in the neighborhood of this threshold, expecting to recover the phenomenology obtained
in the m = 1 case. For simplicity we shall consider only the first critical regime at α = α(1)

p ,
supposing an algebraic decay of Qn with an exponent a to its asymptotic value φ(1)

p . More
precisely we make the ansatz Qh,n(P ) = δ(h+∞)(φ(P )+A(P )n−a)+o(n−a), with A(P )

a positive function. The computation proceeds as in Sect. 1: one inserts this ansatz in (129)
and expands to order n−2a . The algebraic decays translate into singularities around x = 1 in
the generating functions of (130), matching the three leading orders one obtains

∫
dP(P )

φ(P )∫
dP (h)( 1−tanhh

2 )m
= 1 − exp

[
−α(1)

p k

2k
(φ(1)

p )k−1

]
, (132)

∫
dP(P )

A(P )∫
dP (h)( 1−tanhh

2 )m

= α(1)
p k(k − 1)

2k
(φ(1)

p )k−2 exp

[
−α(1)

p k

2k
(φ(1)

p )k−1

]∫
dP(P )A(P ), (133)

(1 − a)2

(1 − 2a)
= λ(1) = 2k(k − 2)

α
(1)
p k(k − 1)(φ

(1)
p )k−1

. (134)

The first equality is a direct consequence of (126, 127), the second is fulfilled by taking
A(P ) in the eigenspace of eigenvalue 1 of the differential of (126, 127), while the third
fixes the exponent a. The computation of the parameter λ at the RSB level thus leads to the
expression found in the RS approach (cf. (66)), apart from the replacement of the critical
connectivity and order parameter with their corresponding RSB values.

COL

The random q-COL model is described at the 1RSB level by a distribution P(P ) over (in-
variant under the color permutations) distributions P (η) of fields (laws on X = {1, . . . , q}).
P is solution of the distributional equation P

d= F(P1, . . . ,Pl), where l is a Poisson random
variable of mean c and F is defined by

P (η) = 1

Z(P1, . . . ,Pl)

∫
dPi(ηi)δ(η − f (η1, . . . , ηl))z(η1, . . . , ηl)

m,

f ({ηi})(σ ) = 1

z({ηi})
l∏

i=1

(1 − ηi(σ )).

(135)
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One can distinguish the hard fields which constrain a variable to take a definite color and
define

P (η) = φ(P )
1

q

q∑

σ=1

δ(η − dσ ) + (1 − φ(P ))P̃ (η), dσ (τ ) = δσ,τ , (136)

where P̃ is a normalized distribution with no intensity on the hard fields dσ . The order
parameter φ(P ) is found from (135) to obey:

φ(P )P(P ) =
∞∑

l=0

pl

∫ l∏

i=1

dP(Pi)δ(P − F(P1, . . . ,Pl))
1

Z(P1, . . . ,Pl)

×
q−1∑

p=0

q

(
q − 1

p

)
(−1)p

l∏

i=1

(∫
dPi(η)(1 − η(σ ))m − p

q
φ(Pi)

)
. (137)

The average m.s.r.d. on random trees where the initial configurations are drawn from the
1RSB measure μ(1) reads

q(L)
n =

∫
dP(P )

∫
dη

∑

σ

η(σ )q(σ,L)
η,n (P ), (138)

where q(σ,L)
η,n (P ) is the conditional average of the joint law of size and fields messages. Note

that all values of σ contribute in the same way above, by the symmetry between colors. The
equation governing q(σ,L)

η,n (P ) is

q(σ,L+1)
η,n (P )P(P ) =

∞∑

l=0

pl

∫ l∏

i=1

dP(Pi)δ(P − F(P1, . . . ,Pl))
1

Z(P1, . . . ,Pl)

×
∫ l∏

i=1

dηiδ(η − f (η1, . . . , ηl))z(η1, . . . , ηl)
m

×
∑

σ1,...,σl
n1,...,nl

l∏

i=1

μ(σi |σ ;ηi)q
(σi ,L)
ηi ,ni

(Pi)I

(
n = 1 + min

τ �=σ

l∑

i=1

δτ,σi
ni

)
, (139)

with

μ(σi |σ ;ηi) = ηi(σi)

1 − ηi(σ )
I(σi �= σ). (140)

The order parameter φ = ∫
dP(P )φ(P ) is again the height of the plateau in the L → ∞

limit of the integrated average m.s.r.d. Qn. One can indeed check that q(σ)
η,n (P ) has a Dirac

peak of intensity φ(P )/q in (η,n) = (dσ ,∞).
The study of the critical behavior at the transition c(1)

p corresponding to the appearance of
hard fields in the 1RSB distributions is similar to the SAT case. We first write an integrated
version of (139),
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∫
dP(P )

∫
dη η(σ )mq(σ)

η,n (P )
∫

dP (η)η(σ )m

=
∞∑

l=0

e−ccl

l!
1

(q − 1)l

q∑

σ1,...,σl=2

∑

n1,...,nl

I

(
n = 1 + min

τ=2,...,q

[
l∑

i=1

δτ,σi
ni

])

×
l∏

i=1

[
(q − 1)

∫
dP(P )

∫
dη(1 − η(1))m−1η(σi)q

(σi )
η,ni

(P )∫
dP (η)(1 − η(σ ))m

]
, (141)

which is independent on the value of σ . The ansatz Q(σ)
η,n(P ) = δ(η − dσ )(φ(P ) +

A(P )n−a) + o(n−a) is then inserted in this equation. The first two orders in an asymptotic
expansion at large n in powers of n−a are satisfied thanks to (137) and by choosing A(P )

in the eigenspace of eigenvalue 1 of its differential. The third order fixes the value of the
exponent a through

(1 − a)2

(1 − 2a)
= (q − 2)

1 − φ̃1/(q−1)

φ̃1/(q−1)
, φ̃ = 1

q

∫
dP(P )

φ(P )∫
dP (η)η(σ )m

, (142)

which corresponds for m = 1 to the expression found in (65).
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